論文の概要: How to enhance quantum generative adversarial learning of noisy
information
- arxiv url: http://arxiv.org/abs/2012.05996v1
- Date: Thu, 10 Dec 2020 21:48:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 05:25:30.717100
- Title: How to enhance quantum generative adversarial learning of noisy
information
- Title(参考訳): 雑音情報に対する量子生成逆学習の強化法
- Authors: Paolo Braccia, Filippo Caruso and Leonardo Banchi
- Abstract要約: 最適化プロセス中にどのような異なるトレーニング問題が発生するかを示す。
我々は,どのオペレーティング・システムにおいても,より高速な収束を実現するための新しい戦略を提案する。
本研究は,このようなハイブリッド古典量子プロトコルの実験的実験の道を開くものである。
- 参考スコア(独自算出の注目度): 5.8010446129208155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Machine Learning is where nowadays machine learning meets quantum
information science. In order to implement this new paradigm for novel quantum
technologies, we still need a much deeper understanding of its underlying
mechanisms, before proposing new algorithms to feasibly address real problems.
In this context, quantum generative adversarial learning is a promising
strategy to use quantum devices for quantum estimation or generative machine
learning tasks. However, the convergence behaviours of its training process,
which is crucial for its practical implementation on quantum processors, have
not been investigated in detail yet. Indeed here we show how different training
problems may occur during the optimization process, such as the emergence of
limit cycles. The latter may remarkably extend the convergence time in the
scenario of mixed quantum states playing a crucial role in the already
available noisy intermediate scale quantum devices. Then, we propose new
strategies to achieve a faster convergence in any operating regime. Our results
pave the way for new experimental demonstrations of such hybrid
classical-quantum protocols allowing to evaluate the potential advantages over
their classical counterparts.
- Abstract(参考訳): 量子機械学習は、現在機械学習が量子情報科学と出会う場所である。
新たな量子技術のためにこの新しいパラダイムを実装するためには、実際の問題に対処する新しいアルゴリズムを提案する前に、その基盤となるメカニズムをより深く理解する必要がある。
この文脈では、量子生成逆学習は、量子推定や生成機械学習タスクに量子デバイスを使用するための有望な戦略である。
しかし、量子プロセッサの実用的な実装に不可欠であるその訓練プロセスの収束挙動は、まだ詳細には調査されていない。
実際、ここでは、リミットサイクルの出現など、最適化プロセス中に異なるトレーニング問題が発生する可能性があることを示す。
後者は、既に利用可能なノイズのある中間スケール量子デバイスにおいて重要な役割を果たす混合量子状態のシナリオにおける収束時間を著しく延長する可能性がある。
そこで我々は,あらゆる運用体制において,より高速な収束を実現するための新しい戦略を提案する。
本研究は,このようなハイブリッドな古典量子プロトコルの実験的実験を行い,古典的プロトコルに対する潜在的優位性を評価するための方法である。
関連論文リスト
- Quantum Supervised Learning [0.5439020425819]
量子コンピューティングの最近の進歩は、これを複雑な計算課題に取り組むための先進的な解決策として位置づけている。
量子機械学習の分野はまだ初期段階にあり、短期的な量子優位性に関する懐疑的なレベルが持続している。
本稿では、教師あり学習のための現在の量子アルゴリズムに関する古典的な視点を提供することを目的とする。
論文 参考訳(メタデータ) (2024-07-24T11:05:05Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - SEQUENT: Towards Traceable Quantum Machine Learning using Sequential
Quantum Enhanced Training [5.819818547073678]
本稿では,ハイブリッド機械学習における量子コンピューティング手法のトレーサブルな応用のためのアーキテクチャとトレーニングプロセスを提案する。
本研究は、SEQUENTの適用可能性の実証として、現在の手法の不備と予備実験結果に関する公式な証拠を提供する。
論文 参考訳(メタデータ) (2023-01-06T16:55:59Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
本稿では、教師なし、教師なし、強化学習アルゴリズムにおけるディープラーニングとカーネル手法の使用について述べる。
我々は、微分可能プログラミング、生成モデル、機械学習に対する統計的アプローチ、量子機械学習など、より専門的なトピックについて議論する。
論文 参考訳(メタデータ) (2022-04-08T17:48:59Z) - Synergic quantum generative machine learning [0.0]
提案手法は, ジェネレータと識別器の協調に依拠し, 量子交感神経生成学習と呼ぶ。
我々は,最近提案された量子生成逆学習と相乗的アプローチが好適に比較できるという数値的証拠を提示する。
量子シミュレータで得られた結果に加えて、実際のプログラマブル量子コンピュータで得られた実験結果も提示する。
論文 参考訳(メタデータ) (2021-12-25T16:39:33Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。