EQG-RACE: Examination-Type Question Generation
- URL: http://arxiv.org/abs/2012.06106v1
- Date: Fri, 11 Dec 2020 03:52:17 GMT
- Title: EQG-RACE: Examination-Type Question Generation
- Authors: Xin Jia, Wenjie Zhou, Xu Sun, Yunfang Wu
- Abstract summary: We propose an innovative Examination-type Question Generation approach (EQG-RACE) to generate exam-like questions based on a dataset extracted from RACE.
Two main strategies are employed in EQG-RACE for dealing with discrete answer information and reasoning among long contexts.
Experimental results show a state-of-the-art performance of EQG-RACE, which is apparently superior to the baselines.
- Score: 21.17100754955864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Question Generation (QG) is an essential component of the automatic
intelligent tutoring systems, which aims to generate high-quality questions for
facilitating the reading practice and assessments. However, existing QG
technologies encounter several key issues concerning the biased and unnatural
language sources of datasets which are mainly obtained from the Web (e.g.
SQuAD). In this paper, we propose an innovative Examination-type Question
Generation approach (EQG-RACE) to generate exam-like questions based on a
dataset extracted from RACE. Two main strategies are employed in EQG-RACE for
dealing with discrete answer information and reasoning among long contexts. A
Rough Answer and Key Sentence Tagging scheme is utilized to enhance the
representations of input. An Answer-guided Graph Convolutional Network (AG-GCN)
is designed to capture structure information in revealing the inter-sentences
and intra-sentence relations. Experimental results show a state-of-the-art
performance of EQG-RACE, which is apparently superior to the baselines. In
addition, our work has established a new QG prototype with a reshaped dataset
and QG method, which provides an important benchmark for related research in
future work. We will make our data and code publicly available for further
research.
Related papers
- QontSum: On Contrasting Salient Content for Query-focused Summarization [22.738731393540633]
Query-focused summarization (QFS) is a challenging task in natural language processing that generates summaries to address specific queries.
This paper highlights the role of QFS in Grounded Answer Generation (GAR)
We propose QontSum, a novel approach for QFS that leverages contrastive learning to help the model attend to the most relevant regions of the input document.
arXiv Detail & Related papers (2023-07-14T19:25:35Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - PIE-QG: Paraphrased Information Extraction for Unsupervised Question
Generation from Small Corpora [4.721845865189576]
PIE-QG uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages.
Triples in the form of subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers.
arXiv Detail & Related papers (2023-01-03T12:20:51Z) - Unified Question Generation with Continual Lifelong Learning [41.81627903996791]
Existing QG methods mainly focus on building or training models for specific QG datasets.
We propose a model named UnifiedQG based on lifelong learning techniques, which can continually learn QG tasks.
In addition, we transform the ability of a single trained Unified-QG model in improving $8$ Question Answering (QA) systems' performance.
arXiv Detail & Related papers (2022-01-24T14:05:18Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
Question Generation (QG) is the task of generating a plausible question for a passage, answer> pair.
We make use of freely available news summary data, transforming declarative sentences into appropriate questions using dependency parsing, named entity recognition and semantic role labeling.
The resulting questions are then combined with the original news articles to train an end-to-end neural QG model.
arXiv Detail & Related papers (2021-09-16T13:08:43Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
We propose a new model, QA-GNN, which addresses the problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs)
We show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning.
arXiv Detail & Related papers (2021-04-13T17:32:51Z) - Retrieving and Reading: A Comprehensive Survey on Open-domain Question
Answering [62.88322725956294]
We review the latest research trends in OpenQA, with particular attention to systems that incorporate neural MRC techniques.
We introduce modern OpenQA architecture named Retriever-Reader'' and analyze the various systems that follow this architecture.
We then discuss key challenges to developing OpenQA systems and offer an analysis of benchmarks that are commonly used.
arXiv Detail & Related papers (2021-01-04T04:47:46Z) - Simplifying Paragraph-level Question Generation via Transformer Language
Models [0.0]
Question generation (QG) is a natural language generation task where a model is trained to ask questions corresponding to some input text.
A single Transformer-based unidirectional language model leveraging transfer learning can be used to produce high quality questions.
Our QG model, finetuned from GPT-2 Small, outperforms several paragraph-level QG baselines on the SQuAD dataset by 0.95 METEOR points.
arXiv Detail & Related papers (2020-05-03T14:57:24Z) - Semantic Graphs for Generating Deep Questions [98.5161888878238]
We propose a novel framework which first constructs a semantic-level graph for the input document and then encodes the semantic graph by introducing an attention-based GGNN (Att-GGNN)
On the HotpotQA deep-question centric dataset, our model greatly improves performance over questions requiring reasoning over multiple facts, leading to state-of-the-art performance.
arXiv Detail & Related papers (2020-04-27T10:52:52Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers.
In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers.
arXiv Detail & Related papers (2020-04-13T15:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.