Semantic Graphs for Generating Deep Questions
- URL: http://arxiv.org/abs/2004.12704v1
- Date: Mon, 27 Apr 2020 10:52:52 GMT
- Title: Semantic Graphs for Generating Deep Questions
- Authors: Liangming Pan, Yuxi Xie, Yansong Feng, Tat-Seng Chua, Min-Yen Kan
- Abstract summary: We propose a novel framework which first constructs a semantic-level graph for the input document and then encodes the semantic graph by introducing an attention-based GGNN (Att-GGNN)
On the HotpotQA deep-question centric dataset, our model greatly improves performance over questions requiring reasoning over multiple facts, leading to state-of-the-art performance.
- Score: 98.5161888878238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes the problem of Deep Question Generation (DQG), which aims
to generate complex questions that require reasoning over multiple pieces of
information of the input passage. In order to capture the global structure of
the document and facilitate reasoning, we propose a novel framework which first
constructs a semantic-level graph for the input document and then encodes the
semantic graph by introducing an attention-based GGNN (Att-GGNN). Afterwards,
we fuse the document-level and graph-level representations to perform joint
training of content selection and question decoding. On the HotpotQA
deep-question centric dataset, our model greatly improves performance over
questions requiring reasoning over multiple facts, leading to state-of-the-art
performance. The code is publicly available at
https://github.com/WING-NUS/SG-Deep-Question-Generation.
Related papers
- Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
We focus on a conversational question answering task which combines the challenges of understanding questions in context and reasoning over evidence gathered from heterogeneous sources like text, knowledge graphs, tables, and infoboxes.
Our method utilizes a graph structured representation to aggregate information about a question and its context.
arXiv Detail & Related papers (2024-06-14T13:28:03Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Improving Question Generation with Multi-level Content Planning [70.37285816596527]
This paper addresses the problem of generating questions from a given context and an answer, specifically focusing on questions that require multi-hop reasoning across an extended context.
We propose MultiFactor, a novel QG framework based on multi-level content planning. Specifically, MultiFactor includes two components: FA-model, which simultaneously selects key phrases and generates full answers, and Q-model which takes the generated full answer as an additional input to generate questions.
arXiv Detail & Related papers (2023-10-20T13:57:01Z) - Knowledge Graph Prompting for Multi-Document Question Answering [46.29217406937293]
We propose a Knowledge Graph Prompting (KGP) method to formulate the right context in prompting multi-document question answering (MD-QA)
For graph construction, we create a knowledge graph (KG) over multiple documents with nodes symbolizing passages or document structures (e.g., pages/tables)
arXiv Detail & Related papers (2023-08-22T18:41:31Z) - Single Sequence Prediction over Reasoning Graphs for Multi-hop QA [8.442412179333205]
We propose a single-sequence prediction method over a local reasoning graph (model)footnoteCode/Models.
We use a graph neural network to encode this graph structure and fuse the resulting representations into the entity representations of the model.
Our experiments show significant improvements in answer exact-match/F1 scores and faithfulness of grounding in the reasoning path.
arXiv Detail & Related papers (2023-07-01T13:15:09Z) - Graph Attention with Hierarchies for Multi-hop Question Answering [19.398300844233837]
We present two extensions to the SOTA Graph Neural Network (GNN) based model for HotpotQA.
Experiments on HotpotQA demonstrate the efficiency of the proposed modifications.
arXiv Detail & Related papers (2023-01-27T15:49:50Z) - ComQA:Compositional Question Answering via Hierarchical Graph Neural
Networks [47.12013005600986]
We present a large-scale compositional question answering dataset containing more than 120k human-labeled questions.
To tackle the ComQA problem, we proposed a hierarchical graph neural networks, which represents the document from the low-level word to the high-level sentence.
Our proposed model achieves a significant improvement over previous machine reading comprehension methods and pre-training methods.
arXiv Detail & Related papers (2021-01-16T08:23:27Z) - EQG-RACE: Examination-Type Question Generation [21.17100754955864]
We propose an innovative Examination-type Question Generation approach (EQG-RACE) to generate exam-like questions based on a dataset extracted from RACE.
Two main strategies are employed in EQG-RACE for dealing with discrete answer information and reasoning among long contexts.
Experimental results show a state-of-the-art performance of EQG-RACE, which is apparently superior to the baselines.
arXiv Detail & Related papers (2020-12-11T03:52:17Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
We introduce INQUISITIVE, a dataset of 19K questions that are elicited while a person is reading through a document.
We show that readers engage in a series of pragmatic strategies to seek information.
We evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions.
arXiv Detail & Related papers (2020-10-04T19:03:39Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers.
In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers.
arXiv Detail & Related papers (2020-04-13T15:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.