Quantum-accelerated multilevel Monte Carlo methods for stochastic
differential equations in mathematical finance
- URL: http://arxiv.org/abs/2012.06283v2
- Date: Tue, 22 Jun 2021 20:22:56 GMT
- Title: Quantum-accelerated multilevel Monte Carlo methods for stochastic
differential equations in mathematical finance
- Authors: Dong An, Noah Linden, Jin-Peng Liu, Ashley Montanaro, Changpeng Shao,
Jiasu Wang
- Abstract summary: We study quantum algorithms for differential equations (SDEs)
We provide a quantum algorithm that gives a quadratic speed-up for multilevel Monte Carlo methods in a general setting.
We demonstrate the use of this algorithm in a variety of applications arising in mathematical finance.
- Score: 1.128265591164748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by recent progress in quantum algorithms for ordinary and partial
differential equations, we study quantum algorithms for stochastic differential
equations (SDEs). Firstly we provide a quantum algorithm that gives a quadratic
speed-up for multilevel Monte Carlo methods in a general setting. As
applications, we apply it to compute expectation values determined by classical
solutions of SDEs, with improved dependence on precision. We demonstrate the
use of this algorithm in a variety of applications arising in mathematical
finance, such as the Black-Scholes and Local Volatility models, and Greeks. We
also provide a quantum algorithm based on sublinear binomial sampling for the
binomial option pricing model with the same improvement.
Related papers
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum Variational Solving of Nonlinear and Multi-Dimensional Partial Differential Equations [1.2670268797931266]
A variational quantum algorithm for numerically solving partial differential equations was proposed by Lubasch et al.
We generalize the method to cover a broader class of nonlinear PDEs as well as multidimensional PDEs.
We show via numerical simulations that the algorithm can solve instances of the Single-Asset Black-Scholes equation.
arXiv Detail & Related papers (2023-11-02T18:29:31Z) - Solving Systems of Linear Equations: HHL from a Tensor Networks Perspective [39.58317527488534]
We present an algorithm for solving systems of linear equations based on the HHL algorithm with a novel qudits methodology.
We perform a quantum-inspired version on tensor networks, taking advantage of their ability to perform non-unitary operations such as projection.
arXiv Detail & Related papers (2023-09-11T08:18:41Z) - Quantum Adversarial Learning in Emulation of Monte-Carlo Methods for
Max-cut Approximation: QAOA is not optimal [0.0]
We apply notions of emulation to Variational Quantum Annealing and the Quantum Approximate Algorithm Optimization (QAOA)
Our Variational Quantum Annealing schedule is based on a novel parameterization that can be optimized in a similar gradient-free way as QAOA, using the same physical ingredients.
In order to compare the performance of ans"atze types, we have developed statistical notions of Monte-Carlo methods.
arXiv Detail & Related papers (2022-11-24T19:02:50Z) - Quantum Kernel Methods for Solving Differential Equations [21.24186888129542]
We propose several approaches for solving differential equations (DEs) with quantum kernel methods.
We compose quantum models as weighted sums of kernel functions, where variables are encoded using feature maps and model derivatives are represented.
arXiv Detail & Related papers (2022-03-16T18:56:35Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quantum Algorithms for Solving Ordinary Differential Equations via
Classical Integration Methods [1.802439717192088]
We explore utilizing quantum computers for the purpose of solving differential equations.
We devise and simulate corresponding digital quantum circuits, and implement and run a 6$mathrmth$ order Gauss-Legendre collocation method.
As promising future scenario, the digital arithmetic method could be employed as an "oracle" within quantum search algorithms for inverse problems.
arXiv Detail & Related papers (2020-12-17T09:49:35Z) - Quantum vs. classical algorithms for solving the heat equation [0.04297070083645048]
Quantum computers are predicted to outperform classical ones for solving partial differential equations, perhaps exponentially.
Here we consider a prototypical PDE - the heat equation in a rectangular region - and compare in detail the complexities of ten classical and quantum algorithms for solving it.
arXiv Detail & Related papers (2020-04-14T13:57:47Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z) - Scalable Gradients for Stochastic Differential Equations [40.70998833051251]
adjoint sensitivity method scalably computes gradients of ordinary differential equations.
We generalize this method to differential equations, allowing time-efficient and constant-memory computation.
We use our method to fit neural dynamics defined by networks, achieving competitive performance on a 50-dimensional motion capture dataset.
arXiv Detail & Related papers (2020-01-05T23:05:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.