Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid
Representations
- URL: http://arxiv.org/abs/2012.06434v2
- Date: Fri, 9 Apr 2021 20:11:58 GMT
- Title: Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid
Representations
- Authors: Wang Yifan, Shihao Wu, Cengiz Oztireli, Olga Sorkine-Hornung
- Abstract summary: We develop a hybrid neural surface representation that allows us to impose geometry-aware sampling and regularization.
We demonstrate that our method can be adopted to improve techniques for reconstructing neural implicit surfaces from multi-view images or point clouds.
- Score: 21.64457003420851
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural implicit functions have emerged as a powerful representation for
surfaces in 3D. Such a function can encode a high quality surface with
intricate details into the parameters of a deep neural network. However,
optimizing for the parameters for accurate and robust reconstructions remains a
challenge, especially when the input data is noisy or incomplete. In this work,
we develop a hybrid neural surface representation that allows us to impose
geometry-aware sampling and regularization, which significantly improves the
fidelity of reconstructions. We propose to use \emph{iso-points} as an explicit
representation for a neural implicit function. These points are computed and
updated on-the-fly during training to capture important geometric features and
impose geometric constraints on the optimization. We demonstrate that our
method can be adopted to improve state-of-the-art techniques for reconstructing
neural implicit surfaces from multi-view images or point clouds. Quantitative
and qualitative evaluations show that, compared with existing sampling and
optimization methods, our approach allows faster convergence, better
generalization, and accurate recovery of details and topology.
Related papers
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.
Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
During the Gaussian Splatting optimization process, the scene's geometry can gradually deteriorate if its structure is not deliberately preserved.
We propose a novel approach called GeoGaussian to mitigate this issue.
Our proposed pipeline achieves state-of-the-art performance in novel view synthesis and geometric reconstruction.
arXiv Detail & Related papers (2024-03-17T20:06:41Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field.
We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives.
arXiv Detail & Related papers (2023-08-10T06:40:19Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - Neural Textured Deformable Meshes for Robust Analysis-by-Synthesis [17.920305227880245]
Our paper formulates triple vision tasks in a consistent manner using approximate analysis-by-synthesis.
We show that our analysis-by-synthesis is much more robust than conventional neural networks when evaluated on real-world images.
arXiv Detail & Related papers (2023-05-31T18:45:02Z) - NeuManifold: Neural Watertight Manifold Reconstruction with Efficient
and High-Quality Rendering Support [45.68296352822415]
We present a method for generating high-quality watertight manifold meshes from multi-view input images.
Our method combines the benefits of both worlds; we take the geometry obtained from neural fields, and further optimize the geometry as well as a compact neural texture representation.
arXiv Detail & Related papers (2023-05-26T17:59:21Z) - HR-NeuS: Recovering High-Frequency Surface Geometry via Neural Implicit
Surfaces [6.382138631957651]
We present High-Resolution NeuS, a novel neural implicit surface reconstruction method.
HR-NeuS recovers high-frequency surface geometry while maintaining large-scale reconstruction accuracy.
We demonstrate through experiments on DTU and BlendedMVS datasets that our approach produces 3D geometries that are qualitatively more detailed and quantitatively of similar accuracy compared to previous approaches.
arXiv Detail & Related papers (2023-02-14T02:25:16Z) - Improved surface reconstruction using high-frequency details [44.73668037810989]
We propose a novel method to improve the quality of surface reconstruction in neural rendering.
Our results show that our method can reconstruct high-frequency surface details and obtain better surface reconstruction quality than the current state of the art.
arXiv Detail & Related papers (2022-06-15T23:46:48Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Neural Splines: Fitting 3D Surfaces with Infinitely-Wide Neural Networks [61.07202852469595]
We present Neural Splines, a technique for 3D surface reconstruction that is based on random feature kernels arising from infinitely-wide shallow ReLU networks.
Our method achieves state-of-the-art results, outperforming recent neural network-based techniques and widely used Poisson Surface Reconstruction.
arXiv Detail & Related papers (2020-06-24T14:54:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.