論文の概要: Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D
networks with label uncertainty
- arxiv url: http://arxiv.org/abs/2012.06436v1
- Date: Fri, 11 Dec 2020 15:57:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 02:53:18.986650
- Title: Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D
networks with label uncertainty
- Title(参考訳): ラベル不確実性を有する3D-to-2Dネットワークを用いた腫瘍コアセグメンテーションの不確実性改善
- Authors: Richard McKinley, Micheal Rebsamen, Katrin Daetwyler, Raphael Meier,
Piotr Radojewski, Roland Wiest
- Abstract要約: bratsデータセットは、ハイグレードと低グレードのグリオーマの混合物を含む。
DeepSCANは不確実性の損失を使用して訓練されました。
線形回帰法とランダム森林分類を併用した高次グリオーマ患者の生存率を予測した。
- 参考スコア(独自算出の注目度): 0.13135750017147135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The BraTS dataset contains a mixture of high-grade and low-grade gliomas,
which have a rather different appearance: previous studies have shown that
performance can be improved by separated training on low-grade gliomas (LGGs)
and high-grade gliomas (HGGs), but in practice this information is not
available at test time to decide which model to use. By contrast with HGGs,
LGGs often present no sharp boundary between the tumor core and the surrounding
edema, but rather a gradual reduction of tumor-cell density.
Utilizing our 3D-to-2D fully convolutional architecture, DeepSCAN, which
ranked highly in the 2019 BraTS challenge and was trained using an
uncertainty-aware loss, we separate cases into those with a confidently
segmented core, and those with a vaguely segmented or missing core. Since by
assumption every tumor has a core, we reduce the threshold for classification
of core tissue in those cases where the core, as segmented by the classifier,
is vaguely defined or missing.
We then predict survival of high-grade glioma patients using a fusion of
linear regression and random forest classification, based on age, number of
distinct tumor components, and number of distinct tumor cores.
We present results on the validation dataset of the Multimodal Brain Tumor
Segmentation Challenge 2020 (segmentation and uncertainty challenge), and on
the testing set, where the method achieved 4th place in Segmentation, 1st place
in uncertainty estimation, and 1st place in Survival prediction.
- Abstract(参考訳): 以前の研究では、低グレードグリオーマ(lgg)と高グレードグリオーマ(hggs)の分離トレーニングによって、パフォーマンスが向上できることが示されているが、実際には、どのモデルを使用するかを決めるには、テスト時にこの情報は利用できない。
HGGと対照的に、LGGは腫瘍核と周囲の浮腫の間に鋭い境界を示さず、むしろ腫瘍細胞密度を徐々に減少させる。
3Dから2Dまでの完全な畳み込みアーキテクチャを利用するDeepSCANは、2019年のBraTSチャレンジで高く評価され、不確実性を認識した損失を使用してトレーニングされた。
前提として,各腫瘍にコアがあるため,分類器で区切られたコアが曖昧に定義されたり,欠落している場合には,コア組織の分類のしきい値が低下する。
次に, 年齢, 腫瘍成分数, 腫瘍コア数に基づいて, 線形回帰とランダム森林分類の融合による高次グリオーマ患者の生存率を予測した。
本稿では,マルチモーダル脳腫瘍分割チャレンジ2020の検証データセット(セグメンテーションと不確実性チャレンジ)と,セグメンテーションで4位,不確実性推定で1位,生存予測で1位を得たテストセットについて報告する。
関連論文リスト
- 3D PETCT Tumor Lesion Segmentation via GCN Refinement [4.929126432666667]
グラフ畳み込みニューラルネットワーク(GCN)に基づく後処理手法を提案する。
MICCIA2022 autoPET ChallengeにおいてPET/CTデータセットの腫瘍分画実験を行った。
実験結果から, nnUNet-GCNの改良により偽陽性率が効果的に減少することが示唆された。
論文 参考訳(メタデータ) (2023-02-24T10:52:08Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - Glioma Prognosis: Segmentation of the Tumor and Survival Prediction
using Shape, Geometric and Clinical Information [13.822139791199106]
我々は,ハイパーコラムを用いた畳み込みニューラルネットワーク(cnn)を用いて,健常脳組織から腫瘍を分離する。
私たちのモデルは、腫瘍全体、腫瘍コアおよび増強腫瘍の平均ダイス精度87.315%、77.04%および70.22%を達成した。
論文 参考訳(メタデータ) (2021-04-02T10:49:05Z) - Brain Tumor Detection and Classification based on Hybrid Ensemble
Classifier [0.6091702876917281]
本稿では,ランダムフォレスト(RF)とK-ニアレストネイバー(K-Nearest Neighbour)と決定木(DT)を用いたハイブリッドアンサンブル法を提案する。
腫瘍領域の面積を計算し、脳腫瘍を良性および悪性に分類することを目的としている。
提案手法は,トレーニングとテストにそれぞれ85:15で使用される2556画像のデータセット上でテストを行い,97.305%の精度を示す。
論文 参考訳(メタデータ) (2021-01-01T11:52:29Z) - Multiclass Spinal Cord Tumor Segmentation on MRI with Deep Learning [3.2803205051531235]
我々は,腫瘍を2段階のプロセスで分割する u-net モデルを用いたカスケードアーキテクチャを提案する。
腫瘍、空洞および浮腫のセグメント化(単一のクラスとして)は76.7 $pm$ 1.5%のダイススコアに達し、腫瘍のセグメント化は単独で61.8 $pm$ 4.0%のダイススコアに達した。
論文 参考訳(メタデータ) (2020-12-23T17:31:08Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Brain tumour segmentation using cascaded 3D densely-connected U-net [10.667165962654996]
本稿では,脳腫瘍をサブリージョンに分割する深層学習手法を提案する。
提案アーキテクチャは,U-Netアーキテクチャの変種に基づく3次元畳み込みニューラルネットワークである。
BraTS20バリデーションデータセットの実験結果から, 提案したモデルでは, 全腫瘍, 腫瘍コア, 造影腫瘍の平均Diceスコアが0.90, 0.82, 0.78に達した。
論文 参考訳(メタデータ) (2020-09-16T09:14:59Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Hybrid Attention for Automatic Segmentation of Whole Fetal Head in
Prenatal Ultrasound Volumes [52.53375964591765]
胎児の頭部全体を米国全巻に分割する,最初の完全自動化ソリューションを提案する。
セグメント化タスクは、まずエンコーダ-デコーダディープアーキテクチャの下で、エンドツーエンドのボリュームマッピングとして定式化される。
次に,セグメンタとハイブリットアテンションスキーム(HAS)を組み合わせることで,識別的特徴を選択し,非情報量的特徴を抑える。
論文 参考訳(メタデータ) (2020-04-28T14:43:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。