AIforCOVID: predicting the clinical outcomes in patients with COVID-19
applying AI to chest-X-rays. An Italian multicentre study
- URL: http://arxiv.org/abs/2012.06531v1
- Date: Fri, 11 Dec 2020 18:03:08 GMT
- Title: AIforCOVID: predicting the clinical outcomes in patients with COVID-19
applying AI to chest-X-rays. An Italian multicentre study
- Authors: Paolo Soda, Natascha Claudia D'Amico, Jacopo Tessadori, Giovanni
Valbusa, Valerio Guarrasi, Chandra Bortolotto, Muhammad Usman Akbar, Rosa
Sicilia, Ermanno Cordelli, Deborah Fazzini, Michaela Cellina, Giancarlo
Oliva, Giovanni Callea, Silvia Panella, Maurizio Cariati, Diletta Cozzi,
Vittorio Miele, Elvira Stellato, Gian Paolo Carrafiello, Giulia Castorani,
Annalisa Simeone, Lorenzo Preda, Giulio Iannello, Alessio Del Bue, Fabio
Tedoldi, Marco Al\`i, Diego Sona and Sergio Papa
- Abstract summary: We investigate whether chest X-ray (CXR) can be used as a possible tool for the early identification of patients at risk of severe outcome, like intensive care or death.
CXR is a radiological technique that compared to computed tomography (CT) it is simpler, faster, more widespread and it induces lower radiation dose.
We present a dataset including data collected from 820 patients by six Italian hospitals in spring 2020 during the first COVID-19 emergency.
- Score: 7.456548336226919
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent epidemiological data report that worldwide more than 53 million people
have been infected by SARS-CoV-2, resulting in 1.3 million deaths. The disease
has been spreading very rapidly and few months after the identification of the
first infected, shortage of hospital resources quickly became a problem. In
this work we investigate whether chest X-ray (CXR) can be used as a possible
tool for the early identification of patients at risk of severe outcome, like
intensive care or death. CXR is a radiological technique that compared to
computed tomography (CT) it is simpler, faster, more widespread and it induces
lower radiation dose. We present a dataset including data collected from 820
patients by six Italian hospitals in spring 2020 during the first COVID-19
emergency. The dataset includes CXR images, several clinical attributes and
clinical outcomes. We investigate the potential of artificial intelligence to
predict the prognosis of such patients, distinguishing between severe and mild
cases, thus offering a baseline reference for other researchers and
practitioners. To this goal, we present three approaches that use features
extracted from CXR images, either handcrafted or automatically by convolutional
neuronal networks, which are then integrated with the clinical data. Exhaustive
evaluation shows promising performance both in 10-fold and leave-one-centre-out
cross-validation, implying that clinical data and images have the potential to
provide useful information for the management of patients and hospital
resources.
Related papers
- Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
Renal cell carcinoma represents a significant global health challenge with a low survival rate.
This research aimed to devise a comprehensive deep-learning model capable of predicting survival probabilities in patients with renal cell carcinoma.
The proposed framework comprises three modules: a 3D image feature extractor, clinical variable selection, and survival prediction.
arXiv Detail & Related papers (2023-07-07T13:09:07Z) - BIO-CXRNET: A Robust Multimodal Stacking Machine Learning Technique for
Mortality Risk Prediction of COVID-19 Patients using Chest X-Ray Images and
Clinical Data [0.0]
This study uses 25 biomarkers and CXR images in predicting the risk in 930 COVID-19 patients admitted in Italy.
The proposed multimodal stacking technique produced the precision, sensitivity, and F1-score, of 89.03%, 90.44%, and 89.03%, respectively.
The nomogram-based scoring technique was able to predict the death probability of high-risk patients with an F1 score of 92.88 %.
arXiv Detail & Related papers (2022-06-15T15:23:43Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
Deep learning models have been developed to identify COVID-19 from chest X-rays.
Results have been exceptional when training and testing on open-source data.
Data analysis and model evaluations show that the popular open-source dataset COVIDx is not representative of the real clinical problem.
arXiv Detail & Related papers (2021-09-14T10:59:11Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - COVID-Net CXR-S: Deep Convolutional Neural Network for Severity
Assessment of COVID-19 Cases from Chest X-ray Images [74.77272804752306]
We introduce COVID-Net CXR-S, a convolutional neural network for predicting the airspace severity of a SARS-CoV-2 positive patient based on a CXR image of the patient's chest.
We leveraged transfer learning to transfer representational knowledge gained from over 16,000 CXR images from a multinational cohort of over 15,000 patient cases into a custom network architecture for severity assessment.
The proposed COVID-Net CXR-S has potential to be a powerful tool for computer-aided severity assessment of CXR images of COVID-19 positive patients.
arXiv Detail & Related papers (2021-05-01T14:15:12Z) - Challenges in the application of a mortality prediction model for
COVID-19 patients on an Indian cohort [0.0]
Yan et al. 1 have published a research that uses Machine learning (ML) methods to predict the outcome of COVID-19 patients.
Here, we show the limitations of this model by deploying it on one of the largest datasets of COVID-19 patients.
arXiv Detail & Related papers (2021-01-15T07:06:49Z) - An artificial intelligence system for predicting the deterioration of
COVID-19 patients in the emergency department [28.050958444802944]
During the coronavirus disease 2019 (COVID-19) pandemic, rapid and accurate triage of patients at the emergency department is critical.
We propose a data-driven approach for automatic prediction of deterioration risk using a deep neural network that learns from chest X-ray images.
Our AI prognosis system, trained using data from 3,661 patients, achieves an area under the receiver operating characteristic curve (AUC) of 0.786 when predicting deterioration within 96 hours.
arXiv Detail & Related papers (2020-08-04T19:20:31Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.