Faster Policy Learning with Continuous-Time Gradients
- URL: http://arxiv.org/abs/2012.06684v1
- Date: Sat, 12 Dec 2020 00:22:56 GMT
- Title: Faster Policy Learning with Continuous-Time Gradients
- Authors: Samuel Ainsworth and Kendall Lowrey and John Thickstun and Zaid
Harchaoui and Siddhartha Srinivasa
- Abstract summary: We study the estimation of policy gradients for continuous-time systems with known dynamics.
By reframing policy learning in continuous-time, we show that it is possible construct a more efficient and accurate gradient estimator.
- Score: 6.457260875902829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the estimation of policy gradients for continuous-time systems with
known dynamics. By reframing policy learning in continuous-time, we show that
it is possible construct a more efficient and accurate gradient estimator. The
standard back-propagation through time estimator (BPTT) computes exact
gradients for a crude discretization of the continuous-time system. In
contrast, we approximate continuous-time gradients in the original system. With
the explicit goal of estimating continuous-time gradients, we are able to
discretize adaptively and construct a more efficient policy gradient estimator
which we call the Continuous-Time Policy Gradient (CTPG). We show that
replacing BPTT policy gradients with more efficient CTPG estimates results in
faster and more robust learning in a variety of control tasks and simulators.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Gradient Informed Proximal Policy Optimization [35.22712034665224]
We introduce a novel policy learning method that integrates analytical gradients from differentiable environments with the Proximal Policy Optimization (PPO) algorithm.
By adaptively modifying the alpha value, we can effectively manage the influence of analytical policy gradients during learning.
Our proposed approach outperforms baseline algorithms in various scenarios, such as function optimization, physics simulations, and traffic control environments.
arXiv Detail & Related papers (2023-12-14T07:50:21Z) - Time-Efficient Reinforcement Learning with Stochastic Stateful Policies [20.545058017790428]
We present a novel approach for training stateful policies by decomposing the latter into a gradient internal state kernel and a stateless policy.
We introduce different versions of the stateful policy gradient theorem, enabling us to easily instantiate stateful variants of popular reinforcement learning algorithms.
arXiv Detail & Related papers (2023-11-07T15:48:07Z) - Optimization Landscape of Policy Gradient Methods for Discrete-time
Static Output Feedback [22.21598324895312]
This paper analyzes the optimization landscape inherent to policy gradient methods when applied to static output feedback control.
We derive novel findings regarding convergence (and nearly dimension-free rate) to stationary points for three policy gradient methods.
We provide proof that the vanilla policy gradient method exhibits linear convergence towards local minima when near such minima.
arXiv Detail & Related papers (2023-10-29T14:25:57Z) - Policy Gradient for Rectangular Robust Markov Decision Processes [62.397882389472564]
We introduce robust policy gradient (RPG), a policy-based method that efficiently solves rectangular robust Markov decision processes (MDPs)
Our resulting RPG can be estimated from data with the same time complexity as its non-robust equivalent.
arXiv Detail & Related papers (2023-01-31T12:40:50Z) - Continuous-Time Meta-Learning with Forward Mode Differentiation [65.26189016950343]
We introduce Continuous Meta-Learning (COMLN), a meta-learning algorithm where adaptation follows the dynamics of a gradient vector field.
Treating the learning process as an ODE offers the notable advantage that the length of the trajectory is now continuous.
We show empirically its efficiency in terms of runtime and memory usage, and we illustrate its effectiveness on a range of few-shot image classification problems.
arXiv Detail & Related papers (2022-03-02T22:35:58Z) - Policy Gradient and Actor-Critic Learning in Continuous Time and Space:
Theory and Algorithms [1.776746672434207]
We study policy gradient (PG) for reinforcement learning in continuous time and space.
We propose two types of the actor-critic algorithms for RL, where we learn and update value functions and policies simultaneously and alternatingly.
arXiv Detail & Related papers (2021-11-22T14:27:04Z) - Value Iteration in Continuous Actions, States and Time [99.00362538261972]
We propose a continuous fitted value iteration (cFVI) algorithm for continuous states and actions.
The optimal policy can be derived for non-linear control-affine dynamics.
Videos of the physical system are available at urlhttps://sites.google.com/view/value-iteration.
arXiv Detail & Related papers (2021-05-10T21:40:56Z) - Deep Bayesian Quadrature Policy Optimization [100.81242753620597]
Deep Bayesian quadrature policy gradient (DBQPG) is a high-dimensional generalization of Bayesian quadrature for policy gradient estimation.
We show that DBQPG can substitute Monte-Carlo estimation in policy gradient methods, and demonstrate its effectiveness on a set of continuous control benchmarks.
arXiv Detail & Related papers (2020-06-28T15:44:47Z) - Zeroth-order Deterministic Policy Gradient [116.87117204825105]
We introduce Zeroth-order Deterministic Policy Gradient (ZDPG)
ZDPG approximates policy-reward gradients via two-point evaluations of the $Q$function.
New finite sample complexity bounds for ZDPG improve upon existing results by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-12T16:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.