Gradient Informed Proximal Policy Optimization
- URL: http://arxiv.org/abs/2312.08710v1
- Date: Thu, 14 Dec 2023 07:50:21 GMT
- Title: Gradient Informed Proximal Policy Optimization
- Authors: Sanghyun Son, Laura Yu Zheng, Ryan Sullivan, Yi-Ling Qiao, Ming C. Lin
- Abstract summary: We introduce a novel policy learning method that integrates analytical gradients from differentiable environments with the Proximal Policy Optimization (PPO) algorithm.
By adaptively modifying the alpha value, we can effectively manage the influence of analytical policy gradients during learning.
Our proposed approach outperforms baseline algorithms in various scenarios, such as function optimization, physics simulations, and traffic control environments.
- Score: 35.22712034665224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel policy learning method that integrates analytical
gradients from differentiable environments with the Proximal Policy
Optimization (PPO) algorithm. To incorporate analytical gradients into the PPO
framework, we introduce the concept of an {\alpha}-policy that stands as a
locally superior policy. By adaptively modifying the {\alpha} value, we can
effectively manage the influence of analytical policy gradients during
learning. To this end, we suggest metrics for assessing the variance and bias
of analytical gradients, reducing dependence on these gradients when high
variance or bias is detected. Our proposed approach outperforms baseline
algorithms in various scenarios, such as function optimization, physics
simulations, and traffic control environments. Our code can be found online:
https://github.com/SonSang/gippo.
Related papers
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Optimization Landscape of Policy Gradient Methods for Discrete-time
Static Output Feedback [22.21598324895312]
This paper analyzes the optimization landscape inherent to policy gradient methods when applied to static output feedback control.
We derive novel findings regarding convergence (and nearly dimension-free rate) to stationary points for three policy gradient methods.
We provide proof that the vanilla policy gradient method exhibits linear convergence towards local minima when near such minima.
arXiv Detail & Related papers (2023-10-29T14:25:57Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - The Role of Baselines in Policy Gradient Optimization [83.42050606055822]
We show that the emphstate value baseline allows on-policy.
emphnatural policy gradient (NPG) to converge to a globally optimal.
policy at an $O (1/t) rate gradient.
We find that the primary effect of the value baseline is to textbfreduce the aggressiveness of the updates rather than their variance.
arXiv Detail & Related papers (2023-01-16T06:28:00Z) - A Parametric Class of Approximate Gradient Updates for Policy
Optimization [47.69337420768319]
We develop a unified perspective that re-expresses the underlying updates in terms of a limited choice of gradient form and scaling function.
We obtain novel yet well motivated updates that generalize existing algorithms in a way that can deliver benefits both in terms of convergence speed and final result quality.
arXiv Detail & Related papers (2022-06-17T01:28:38Z) - Bag of Tricks for Natural Policy Gradient Reinforcement Learning [87.54231228860495]
We have implemented and compared strategies that impact performance in natural policy gradient reinforcement learning.
The proposed collection of strategies for performance optimization can improve results by 86% to 181% across the MuJuCo control benchmark.
arXiv Detail & Related papers (2022-01-22T17:44:19Z) - A Study of Policy Gradient on a Class of Exactly Solvable Models [35.90565839381652]
We explore the evolution of the policy parameters, for a special class of exactly solvable POMDPs, as a continuous-state Markov chain.
Our approach relies heavily on random walk theory, specifically on affine Weyl groups.
We analyze the probabilistic convergence of policy gradient to different local maxima of the value function.
arXiv Detail & Related papers (2020-11-03T17:27:53Z) - Deep Bayesian Quadrature Policy Optimization [100.81242753620597]
Deep Bayesian quadrature policy gradient (DBQPG) is a high-dimensional generalization of Bayesian quadrature for policy gradient estimation.
We show that DBQPG can substitute Monte-Carlo estimation in policy gradient methods, and demonstrate its effectiveness on a set of continuous control benchmarks.
arXiv Detail & Related papers (2020-06-28T15:44:47Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
Reinforcement learning (RL) algorithms still suffer from high sample complexity despite outstanding recent successes.
We build on the general sample efficiency of off-policy algorithms.
We show that our approach has better sample efficiency than state-of-the-art policy gradient methods.
arXiv Detail & Related papers (2020-01-08T10:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.