Multi-Scale Cascading Network with Compact Feature Learning for
RGB-Infrared Person Re-Identification
- URL: http://arxiv.org/abs/2012.06843v1
- Date: Sat, 12 Dec 2020 15:39:11 GMT
- Title: Multi-Scale Cascading Network with Compact Feature Learning for
RGB-Infrared Person Re-Identification
- Authors: Can Zhang, Hong Liu, Wei Guo, Mang Ye
- Abstract summary: Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global.
Cross-modality correlations can thus be efficiently explored on salient features for distinctive modality-invariant feature learning.
- Score: 35.55895776505113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RGB-Infrared person re-identification (RGB-IR Re-ID) aims to match persons
from heterogeneous images captured by visible and thermal cameras, which is of
great significance in the surveillance system under poor light conditions.
Facing great challenges in complex variances including conventional
single-modality and additional inter-modality discrepancies, most of the
existing RGB-IR Re-ID methods propose to impose constraints in image level,
feature level or a hybrid of both. Despite the better performance of hybrid
constraints, they are usually implemented with heavy network architecture. As a
matter of fact, previous efforts contribute more as pioneering works in new
cross-modal Re-ID area while leaving large space for improvement. This can be
mainly attributed to: (1) lack of abundant person image pairs from different
modalities for training, and (2) scarcity of salient modality-invariant
features especially on coarse representations for effective matching. To
address these issues, a novel Multi-Scale Part-Aware Cascading framework
(MSPAC) is formulated by aggregating multi-scale fine-grained features from
part to global in a cascading manner, which results in a unified representation
containing rich and enhanced semantic features. Furthermore, a marginal
exponential centre (MeCen) loss is introduced to jointly eliminate mixed
variances from intra- and inter-modal examples. Cross-modality correlations can
thus be efficiently explored on salient features for distinctive
modality-invariant feature learning. Extensive experiments are conducted to
demonstrate that the proposed method outperforms all the state-of-the-art by a
large margin.
Related papers
- Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
The main challenge in cross-modality ReID lies in effectively dealing with visual differences between different modalities.
Existing attack methods have primarily focused on the characteristics of the visible image modality.
This study proposes a universal perturbation attack specifically designed for cross-modality ReID.
arXiv Detail & Related papers (2024-01-18T15:56:23Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - A Multi-modal Approach to Single-modal Visual Place Classification [2.580765958706854]
Multi-sensor fusion approaches combining RGB and depth (D) have gained popularity in recent years.
We reformulate the single-modal RGB image classification task as a pseudo multi-modal RGB-D classification problem.
A practical, fully self-supervised framework for training, appropriately processing, fusing, and classifying these two modalities is described.
arXiv Detail & Related papers (2023-05-10T14:04:21Z) - Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
Cross-spectral person re-identification, which aims to associate identities to pedestrians across different spectra, faces a main challenge of the modality discrepancy.
In this paper, we address the problem from both image-level and feature-level in an end-to-end hybrid learning framework named robust feature mining network (RFM)
Experiment results on two standard cross-spectral person re-identification datasets, RegDB and SYSU-MM01, have demonstrated state-of-the-art performance.
arXiv Detail & Related papers (2023-02-02T05:24:50Z) - Towards Homogeneous Modality Learning and Multi-Granularity Information
Exploration for Visible-Infrared Person Re-Identification [16.22986967958162]
Visible-infrared person re-identification (VI-ReID) is a challenging and essential task, which aims to retrieve a set of person images over visible and infrared camera views.
Previous methods attempt to apply generative adversarial network (GAN) to generate the modality-consisitent data.
In this work, we address cross-modality matching problem with Aligned Grayscale Modality (AGM), an unified dark-line spectrum that reformulates visible-infrared dual-mode learning as a gray-gray single-mode learning problem.
arXiv Detail & Related papers (2022-04-11T03:03:19Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
Multi-contrast super-resolution (SR) reconstruction is promising to yield SR images with higher quality.
Existing methods lack effective mechanisms to match and fuse these features for better reconstruction.
We propose a novel network to address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques.
arXiv Detail & Related papers (2022-03-26T01:42:59Z) - Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared
Person Re-Identification [84.32086702849338]
We propose a novel modality-adaptive mixup and invariant decomposition (MID) approach for RGB-infrared person re-identification.
MID designs a modality-adaptive mixup scheme to generate suitable mixed modality images between RGB and infrared images.
Experiments on two challenging benchmarks demonstrate superior performance of MID over state-of-the-art methods.
arXiv Detail & Related papers (2022-03-03T14:26:49Z) - MSO: Multi-Feature Space Joint Optimization Network for RGB-Infrared
Person Re-Identification [35.97494894205023]
RGB-infrared cross-modality person re-identification (ReID) task aims to recognize the images of the same identity between the visible modality and the infrared modality.
Existing methods mainly use a two-stream architecture to eliminate the discrepancy between the two modalities in the final common feature space.
We present a novel multi-feature space joint optimization (MSO) network, which can learn modality-sharable features in both the single-modality space and the common space.
arXiv Detail & Related papers (2021-10-21T16:45:23Z) - SFANet: A Spectrum-aware Feature Augmentation Network for
Visible-Infrared Person Re-Identification [12.566284647658053]
We propose a novel spectrum-aware feature augementation network named SFANet for cross-modality matching problem.
Learning with grayscale-spectrum images, our model can apparently reduce modality discrepancy and detect inner structure relations.
In feature-level, we improve the conventional two-stream network through balancing the number of specific and sharable convolutional blocks.
arXiv Detail & Related papers (2021-02-24T08:57:32Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.