Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification
- URL: http://arxiv.org/abs/2007.09314v1
- Date: Sat, 18 Jul 2020 03:08:13 GMT
- Title: Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification
- Authors: Mang Ye, Jianbing Shen, David J. Crandall, Ling Shao, Jiebo Luo
- Abstract summary: Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
- Score: 208.1227090864602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible-infrared person re-identification (VI-ReID) is a challenging
cross-modality pedestrian retrieval problem. Due to the large intra-class
variations and cross-modality discrepancy with large amount of sample noise, it
is difficult to learn discriminative part features. Existing VI-ReID methods
instead tend to learn global representations, which have limited
discriminability and weak robustness to noisy images. In this paper, we propose
a novel dynamic dual-attentive aggregation (DDAG) learning method by mining
both intra-modality part-level and cross-modality graph-level contextual cues
for VI-ReID. We propose an intra-modality weighted-part attention module to
extract discriminative part-aggregated features, by imposing the domain
knowledge on the part relationship mining. To enhance robustness against noisy
samples, we introduce cross-modality graph structured attention to reinforce
the representation with the contextual relations across the two modalities. We
also develop a parameter-free dynamic dual aggregation learning strategy to
adaptively integrate the two components in a progressive joint training manner.
Extensive experiments demonstrate that DDAG outperforms the state-of-the-art
methods under various settings.
Related papers
- Frequency Domain Modality-invariant Feature Learning for
Visible-infrared Person Re-Identification [79.9402521412239]
We propose a novel Frequency Domain modality-invariant feature learning framework (FDMNet) to reduce modality discrepancy from the frequency domain perspective.
Our framework introduces two novel modules, namely the Instance-Adaptive Amplitude Filter (IAF) and the Phrase-Preserving Normalization (PPNorm)
arXiv Detail & Related papers (2024-01-03T17:11:27Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) is a challenging task due to large cross-modality discrepancies and intra-class variations.
Existing methods mainly focus on learning modality-shared representations by embedding different modalities into the same feature space.
We propose a novel Modality Unifying Network (MUN) to explore a robust auxiliary modality for VI-ReID.
arXiv Detail & Related papers (2023-09-12T14:22:22Z) - Shape-Erased Feature Learning for Visible-Infrared Person
Re-Identification [90.39454748065558]
Body shape is one of the significant modality-shared cues for VI-ReID.
We propose shape-erased feature learning paradigm that decorrelates modality-shared features in two subspaces.
Experiments on SYSU-MM01, RegDB, and HITSZ-VCM datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-04-09T10:22:10Z) - Learning Progressive Modality-shared Transformers for Effective
Visible-Infrared Person Re-identification [27.75907274034702]
We propose a novel deep learning framework named Progressive Modality-shared Transformer (PMT) for effective VI-ReID.
To reduce the negative effect of modality gaps, we first take the gray-scale images as an auxiliary modality and propose a progressive learning strategy.
To cope with the problem of large intra-class differences and small inter-class differences, we propose a Discriminative Center Loss.
arXiv Detail & Related papers (2022-12-01T02:20:16Z) - Probing Visual-Audio Representation for Video Highlight Detection via
Hard-Pairs Guided Contrastive Learning [23.472951216815765]
Key to effective video representations is cross-modal representation learning and fine-grained feature discrimination.
In this paper, we enrich intra-modality and cross-modality relations for representation modeling.
We enlarge the discriminative power of feature embedding with a hard-pairs guided contrastive learning scheme.
arXiv Detail & Related papers (2022-06-21T07:29:37Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
In this paper, we exploit Pose Estimation as an auxiliary learning task to assist the VI-ReID task in an end-to-end framework.
By jointly training these two tasks in a mutually beneficial manner, our model learns higher quality modality-shared and ID-related features.
Experimental results on two benchmark VI-ReID datasets show that the proposed method consistently improves state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2022-01-11T09:44:00Z) - Multi-Modal Mutual Information Maximization: A Novel Approach for
Unsupervised Deep Cross-Modal Hashing [73.29587731448345]
We propose a novel method, dubbed Cross-Modal Info-Max Hashing (CMIMH)
We learn informative representations that can preserve both intra- and inter-modal similarities.
The proposed method consistently outperforms other state-of-the-art cross-modal retrieval methods.
arXiv Detail & Related papers (2021-12-13T08:58:03Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Multi-Scale Cascading Network with Compact Feature Learning for
RGB-Infrared Person Re-Identification [35.55895776505113]
Multi-Scale Part-Aware Cascading framework (MSPAC) is formulated by aggregating multi-scale fine-grained features from part to global.
Cross-modality correlations can thus be efficiently explored on salient features for distinctive modality-invariant feature learning.
arXiv Detail & Related papers (2020-12-12T15:39:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.