Learn-Prune-Share for Lifelong Learning
- URL: http://arxiv.org/abs/2012.06956v1
- Date: Sun, 13 Dec 2020 04:05:16 GMT
- Title: Learn-Prune-Share for Lifelong Learning
- Authors: Zifeng Wang, Tong Jian, Kaushik Chowdhury, Yanzhi Wang, Jennifer Dy,
Stratis Ioannidis
- Abstract summary: We propose a learn-prune-share (LPS) algorithm which addresses the challenges of catastrophic forgetting, parsimony, and knowledge reuse simultaneously.
LPS splits the network into task-specific partitions via an ADMM-based pruning strategy. This leads to no forgetting, while maintaining parsimony.
- Score: 25.678753894026357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In lifelong learning, we wish to maintain and update a model (e.g., a neural
network classifier) in the presence of new classification tasks that arrive
sequentially. In this paper, we propose a learn-prune-share (LPS) algorithm
which addresses the challenges of catastrophic forgetting, parsimony, and
knowledge reuse simultaneously. LPS splits the network into task-specific
partitions via an ADMM-based pruning strategy. This leads to no forgetting,
while maintaining parsimony. Moreover, LPS integrates a novel selective
knowledge sharing scheme into this ADMM optimization framework. This enables
adaptive knowledge sharing in an end-to-end fashion. Comprehensive experimental
results on two lifelong learning benchmark datasets and a challenging
real-world radio frequency fingerprinting dataset are provided to demonstrate
the effectiveness of our approach. Our experiments show that LPS consistently
outperforms multiple state-of-the-art competitors.
Related papers
- Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
arXiv Detail & Related papers (2023-02-02T04:27:54Z) - Lifelong Reinforcement Learning with Modulating Masks [16.24639836636365]
Lifelong learning aims to create AI systems that continuously and incrementally learn during a lifetime, similar to biological learning.
Attempts so far have met problems, including catastrophic forgetting, interference among tasks, and the inability to exploit previous knowledge.
We show that lifelong reinforcement learning with modulating masks is a promising approach to lifelong learning, to the composition of knowledge to learn increasingly complex tasks, and to knowledge reuse for efficient and faster learning.
arXiv Detail & Related papers (2022-12-21T15:49:20Z) - Mixture-of-Variational-Experts for Continual Learning [0.0]
We propose an optimality principle that facilitates a trade-off between learning and forgetting.
We propose a neural network layer for continual learning, called Mixture-of-Variational-Experts (MoVE)
Our experiments on variants of the MNIST and CIFAR10 datasets demonstrate the competitive performance of MoVE layers.
arXiv Detail & Related papers (2021-10-25T06:32:06Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Network Classifiers Based on Social Learning [71.86764107527812]
We propose a new way of combining independently trained classifiers over space and time.
The proposed architecture is able to improve prediction performance over time with unlabeled data.
We show that this strategy results in consistent learning with high probability, and it yields a robust structure against poorly trained classifiers.
arXiv Detail & Related papers (2020-10-23T11:18:20Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
We propose a self-paced knowledge distillation framework, termed Learning From Multiple Experts (LFME)
We refer to these models as 'Experts', and the proposed LFME framework aggregates the knowledge from multiple 'Experts' to learn a unified student model.
We conduct extensive experiments and demonstrate that our method is able to achieve superior performances compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-06T12:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.