CLIPood: Generalizing CLIP to Out-of-Distributions
- URL: http://arxiv.org/abs/2302.00864v2
- Date: Thu, 13 Jul 2023 09:16:39 GMT
- Title: CLIPood: Generalizing CLIP to Out-of-Distributions
- Authors: Yang Shu, Xingzhuo Guo, Jialong Wu, Ximei Wang, Jianmin Wang,
Mingsheng Long
- Abstract summary: Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances.
We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on unseen test data.
Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.
- Score: 73.86353105017076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) generalization, where the model needs to handle
distribution shifts from training, is a major challenge of machine learning.
Contrastive language-image pre-training (CLIP) models have shown impressive
zero-shot ability, but the further adaptation of CLIP on downstream tasks
undesirably degrades OOD performances. This paper aims at generalizing CLIP to
out-of-distribution test data on downstream tasks. We propose CLIPood, a
fine-tuning method that can adapt CLIP models to OOD situations where both
domain shifts and open classes may occur on the unseen test data. To exploit
the semantic relations between classes from the text modality, CLIPood
introduces a new training objective, margin metric softmax (MMS), with class
adaptive margins for fine-tuning. To incorporate both pre-trained zero-shot
model and fine-tuned task-adaptive model, CLIPood leverages a new optimization
strategy, Beta moving average (BMA), to maintain a temporal ensemble weighted
by Beta distribution. Experiments on diverse datasets with different OOD
scenarios show that CLIPood consistently outperforms existing generalization
techniques.
Related papers
- Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Efficient and Long-Tailed Generalization for Pre-trained Vision-Language Model [43.738677778740325]
We propose a novel framework to achieve efficient and long-tailed generalization, which can be termed as Candle.
Candle achieves state-of-the-art performance over extensive experiments on 11 diverse datasets.
arXiv Detail & Related papers (2024-06-18T14:07:13Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Test-Time Adaptation with CLIP Reward for Zero-Shot Generalization in
Vision-Language Models [76.410400238974]
We propose TTA with feedback to rectify the model output and prevent the model from becoming blindly confident.
A CLIP model is adopted as the reward model during TTA and provides feedback for the VLM.
The proposed textitreinforcement learning with CLIP feedback(RLCF) framework is highly flexible and universal.
arXiv Detail & Related papers (2023-05-29T11:03:59Z) - Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need [84.3507610522086]
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting old ones.
Recent pre-training has achieved substantial progress, making vast pre-trained models (PTMs) accessible for CIL.
We argue that the core factors in CIL are adaptivity for model updating and generalizability for knowledge transferring.
arXiv Detail & Related papers (2023-03-13T17:59:02Z) - Learning from Mistakes: Self-Regularizing Hierarchical Representations
in Point Cloud Semantic Segmentation [15.353256018248103]
LiDAR semantic segmentation has gained attention to accomplish fine-grained scene understanding.
We present a coarse-to-fine setup that LEArns from classification mistaKes (LEAK) derived from a standard model.
Our LEAK approach is very general and can be seamlessly applied on top of any segmentation architecture.
arXiv Detail & Related papers (2023-01-26T14:52:30Z) - Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning [31.66745229673066]
We consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm.
To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization.
Our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch.
arXiv Detail & Related papers (2021-03-03T05:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.