Context-Enhanced Entity and Relation Embedding for Knowledge Graph
Completion
- URL: http://arxiv.org/abs/2012.07011v1
- Date: Sun, 13 Dec 2020 09:20:42 GMT
- Title: Context-Enhanced Entity and Relation Embedding for Knowledge Graph
Completion
- Authors: Ziyue Qiao, Zhiyuan Ning, Yi Du, Yuanchun Zhou
- Abstract summary: We propose a model named AggrE, which conducts efficient aggregations on entity context and relation context in multi-hops.
Experiment results show that AggrE is competitive to existing models.
- Score: 2.580765958706854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most researches for knowledge graph completion learn representations of
entities and relations to predict missing links in incomplete knowledge graphs.
However, these methods fail to take full advantage of both the contextual
information of entity and relation. Here, we extract contexts of entities and
relations from the triplets which they compose. We propose a model named AggrE,
which conducts efficient aggregations respectively on entity context and
relation context in multi-hops, and learns context-enhanced entity and relation
embeddings for knowledge graph completion. The experiment results show that
AggrE is competitive to existing models.
Related papers
- Inference over Unseen Entities, Relations and Literals on Knowledge Graphs [1.7474352892977463]
knowledge graph embedding models have been successfully applied in the transductive setting to tackle various challenging tasks.
We propose the attentive byte-pair encoding layer (BytE) to construct a triple embedding from a sequence of byte-pair encoded subword units of entities and relations.
BytE leads to massive feature reuse via weight tying, since it forces a knowledge graph embedding model to learn embeddings for subword units instead of entities and relations directly.
arXiv Detail & Related papers (2024-10-09T10:20:54Z) - Relation-Aware Question Answering for Heterogeneous Knowledge Graphs [37.38138785470231]
Existing retrieval-based approaches solve this task by concentrating on the specific relation at different hops.
We claim they fail to utilize information from head-tail entities and the semantic connection between relations to enhance the current relation representation.
Our approach achieves a significant performance gain over the prior state-of-the-art.
arXiv Detail & Related papers (2023-12-19T08:01:48Z) - ViRel: Unsupervised Visual Relations Discovery with Graph-level Analogy [65.5580334698777]
ViRel is a method for unsupervised discovery and learning of Visual Relations with graph-level analogy.
We show that our method achieves above 95% accuracy in relation classification.
We further generalizes to unseen tasks with more complicated relational structures.
arXiv Detail & Related papers (2022-07-04T16:56:45Z) - Learning Relation-Specific Representations for Few-shot Knowledge Graph
Completion [24.880078645503417]
We propose a Relation-Specific Context Learning framework, which exploits graph contexts of triples to capture semantic information of relations and entities simultaneously.
Experimental results on two public datasets demonstrate that RSCL outperforms state-of-the-art FKGC methods.
arXiv Detail & Related papers (2022-03-22T11:45:48Z) - Is There More Pattern in Knowledge Graph? Exploring Proximity Pattern
for Knowledge Graph Embedding [13.17623081024394]
We name such semantic phenomenon in knowledge graph as proximity pattern.
With the original knowledge graph, we design a Chained couPle-GNN architecture to deeply merge the two patterns.
Being evaluated on FB15k-237 and WN18RR datasets, CP-GNN achieves state-of-the-art results for Knowledge Graph Completion task.
arXiv Detail & Related papers (2021-10-02T03:50:42Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
We propose a general approach to learn relation prototypes from unlabeled texts.
We learn relation prototypes as an implicit factor between entities.
We conduct experiments on two publicly available datasets: New York Times and Google Distant Supervision.
arXiv Detail & Related papers (2020-11-27T06:21:12Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
We propose Hitt to learn representations of entities and relations in a complex knowledge graph.
Experimental results show that Hitt achieves new state-of-the-art results on multiple link prediction.
We additionally propose a simple approach to integrate Hitt into BERT and demonstrate its effectiveness on two Freebase factoid answering datasets.
arXiv Detail & Related papers (2020-08-28T18:58:15Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Relational Message Passing for Knowledge Graph Completion [78.47976646383222]
We propose a relational message passing method for knowledge graph completion.
It passes relational messages among edges iteratively to aggregate neighborhood information.
Results show our method outperforms stateof-the-art knowledge completion methods by a large margin.
arXiv Detail & Related papers (2020-02-17T03:33:41Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.