A Contextualized BERT model for Knowledge Graph Completion
- URL: http://arxiv.org/abs/2412.11016v1
- Date: Sun, 15 Dec 2024 02:03:16 GMT
- Title: A Contextualized BERT model for Knowledge Graph Completion
- Authors: Haji Gul, Abdul Ghani Naim, Ajaz A. Bhat,
- Abstract summary: We introduce a contextualized BERT model for Knowledge Graph Completion (KGC)
Our model eliminates the need for entity descriptions and negative triplet sampling, reducing computational demands while improving performance.
Our model outperforms state-of-the-art methods on standard datasets, improving Hit@1 by 5.3% and 4.88% on FB15k-237 and WN18RR respectively.
- Score: 0.0
- License:
- Abstract: Knowledge graphs (KGs) are valuable for representing structured, interconnected information across domains, enabling tasks like semantic search, recommendation systems and inference. A pertinent challenge with KGs, however, is that many entities (i.e., heads, tails) or relationships are unknown. Knowledge Graph Completion (KGC) addresses this by predicting these missing nodes or links, enhancing the graph's informational depth and utility. Traditional methods like TransE and ComplEx predict tail entities but struggle with unseen entities. Textual-based models leverage additional semantics but come with high computational costs, semantic inconsistencies, and data imbalance issues. Recent LLM-based models show improvement but overlook contextual information and rely heavily on entity descriptions. In this study, we introduce a contextualized BERT model for KGC that overcomes these limitations by utilizing the contextual information from neighbouring entities and relationships to predict tail entities. Our model eliminates the need for entity descriptions and negative triplet sampling, reducing computational demands while improving performance. Our model outperforms state-of-the-art methods on standard datasets, improving Hit@1 by 5.3% and 4.88% on FB15k-237 and WN18RR respectively, setting a new benchmark in KGC.
Related papers
- Efficient Relational Context Perception for Knowledge Graph Completion [25.903926643251076]
Knowledge Graphs (KGs) provide a structured representation of knowledge but often suffer from challenges of incompleteness.
Previous knowledge graph embedding models are limited in their ability to capture expressive features.
We propose Triple Receptance Perception architecture to model sequential information, enabling the learning of dynamic context.
arXiv Detail & Related papers (2024-12-31T11:25:58Z) - An Automatic Graph Construction Framework based on Large Language Models for Recommendation [49.51799417575638]
We introduce AutoGraph, an automatic graph construction framework based on large language models for recommendation.
LLMs infer the user preference and item knowledge, which is encoded as semantic vectors.
Latent factors are incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics.
arXiv Detail & Related papers (2024-12-24T07:51:29Z) - Deep Sparse Latent Feature Models for Knowledge Graph Completion [24.342670268545085]
In this paper, we introduce a novel framework of sparse latent feature models for knowledge graphs.
Our approach not only effectively completes missing triples but also provides clear interpretability of the latent structures.
Our method significantly improves performance by revealing latent communities and producing interpretable representations.
arXiv Detail & Related papers (2024-11-24T03:17:37Z) - Multi-perspective Improvement of Knowledge Graph Completion with Large
Language Models [95.31941227776711]
We propose MPIKGC to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs)
We conducted extensive evaluation of our framework based on four description-based KGC models and four datasets, for both link prediction and triplet classification tasks.
arXiv Detail & Related papers (2024-03-04T12:16:15Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - KERMIT: Knowledge Graph Completion of Enhanced Relation Modeling with Inverse Transformation [19.31783654838732]
We use large language models to generate coherent descriptions, bridging the semantic gap between queries and answers.
We also utilize inverse relations to create a symmetric graph, thereby providing augmented training samples for KGC.
Our approach achieves a 4.2% improvement in Hit@1 on WN18RR and a 3.4% improvement in Hit@3 on FB15k-237, demonstrating superior performance.
arXiv Detail & Related papers (2023-09-26T09:03:25Z) - Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information [31.10140298420744]
We propose a few-shot out-of-graph (OOG) link prediction task for temporal knowledge graphs (TKGs)
We predict the missing entities from the links concerning unseen entities by employing a meta-learning framework.
Our model achieves superior performance on all three datasets.
arXiv Detail & Related papers (2022-11-15T14:23:07Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.