Phase Retrieval with Holography and Untrained Priors: Tackling the
Challenges of Low-Photon Nanoscale Imaging
- URL: http://arxiv.org/abs/2012.07386v3
- Date: Wed, 21 Apr 2021 03:48:17 GMT
- Title: Phase Retrieval with Holography and Untrained Priors: Tackling the
Challenges of Low-Photon Nanoscale Imaging
- Authors: Hannah Lawrence, David A. Barmherzig, Henry Li, Michael Eickenberg and
Marylou Gabri\'e
- Abstract summary: Phase retrieval is the inverse problem of recovering a signal from magnitude-only Fourier measurements.
We introduce a dataset-free deep learning framework for holographic phase retrieval adapted to nanoscale challenges.
- Score: 7.984370990908576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase retrieval is the inverse problem of recovering a signal from
magnitude-only Fourier measurements, and underlies numerous imaging modalities,
such as Coherent Diffraction Imaging (CDI). A variant of this setup, known as
holography, includes a reference object that is placed adjacent to the specimen
of interest before measurements are collected. The resulting inverse problem,
known as holographic phase retrieval, is well-known to have improved problem
conditioning relative to the original. This innovation, i.e. Holographic CDI,
becomes crucial at the nanoscale, where imaging specimens such as viruses,
proteins, and crystals require low-photon measurements. This data is highly
corrupted by Poisson shot noise, and often lacks low-frequency content as well.
In this work, we introduce a dataset-free deep learning framework for
holographic phase retrieval adapted to these challenges. The key ingredients of
our approach are the explicit and flexible incorporation of the physical
forward model into an automatic differentiation procedure, the Poisson
log-likelihood objective function, and an optional untrained deep image prior.
We perform extensive evaluation under realistic conditions. Compared to
competing classical methods, our method recovers signal from higher noise
levels and is more resilient to suboptimal reference design, as well as to
large missing regions of low frequencies in the observations. Finally, we show
that these properties carry over to experimental data acquired on optical
wavelengths. To the best of our knowledge, this is the first work to consider a
dataset-free machine learning approach for holographic phase retrieval.
Related papers
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Complex-valued Retrievals From Noisy Images Using Diffusion Models [26.467188665404727]
In microscopy, sensors measure only real-valued intensities. Additionally, the sensor readouts are affected by Poissonian-distributed photon noise.
Traditional restoration algorithms aim to minimize the mean squared error (MSE) between the original and recovered images.
This often leads to blurry outcomes with poor perceptual quality.
arXiv Detail & Related papers (2022-12-06T18:57:59Z) - Alternating Phase Langevin Sampling with Implicit Denoiser Priors for
Phase Retrieval [1.7767466724342065]
We present a way leveraging the prior implicitly learned by a denoiser to solve phase retrieval problems by incorporating it in a classical framework.
Compared to performant denoising-based algorithms for phase retrieval, we showcase competitive performance with notable measurements on in-distribution images and notable out-of-distribution images.
arXiv Detail & Related papers (2022-11-02T05:08:50Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychography is a well-established coherent diffraction imaging technique that enables non-invasive imaging of samples at a nanometer scale.
One major limitation of ptychography is the long data acquisition time due to mechanical scanning of the sample.
We propose a generative model combining deep image priors with deep generative priors.
arXiv Detail & Related papers (2022-05-05T02:18:26Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Deep Learning Adapted Acceleration for Limited-view Photoacoustic
Computed Tomography [1.8830359888767887]
Photoacoustic computed tomography (PACT) uses unfocused large-area light to illuminate the target with ultrasound transducer array for PA signal detection.
Limited-view issue could cause a low-quality image in PACT due to the limitation of geometric condition.
A model-based method that combines the mathematical variational model with deep learning is proposed to speed up and regularize the unrolled procedure of reconstruction.
arXiv Detail & Related papers (2021-11-08T02:05:58Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in
Frequency Domain [88.7339322596758]
We present a novel Spatial-Phase Shallow Learning (SPSL) method, which combines spatial image and phase spectrum to capture the up-sampling artifacts of face forgery.
SPSL can achieve the state-of-the-art performance on cross-datasets evaluation as well as multi-class classification and obtain comparable results on single dataset evaluation.
arXiv Detail & Related papers (2021-03-02T16:45:08Z) - Class-Specific Blind Deconvolutional Phase Retrieval Under a Generative
Prior [8.712404218757733]
The problem arises in various imaging modalities such as Fourier ptychography, X-ray crystallography, and in visible light communication.
We propose to solve this inverse problem using alternating gradient descent algorithm under two pretrained deep generative networks as priors.
The proposed recovery algorithm strives to find a sharp image and a blur kernel in the range of the respective pre-generators that textitbest explain the forward measurement model.
arXiv Detail & Related papers (2020-02-28T07:36:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.