Complex-valued Retrievals From Noisy Images Using Diffusion Models
- URL: http://arxiv.org/abs/2212.03235v3
- Date: Fri, 28 Jul 2023 13:10:16 GMT
- Title: Complex-valued Retrievals From Noisy Images Using Diffusion Models
- Authors: Nadav Torem and Roi Ronen and Yoav Y. Schechner and Michael Elad
- Abstract summary: In microscopy, sensors measure only real-valued intensities. Additionally, the sensor readouts are affected by Poissonian-distributed photon noise.
Traditional restoration algorithms aim to minimize the mean squared error (MSE) between the original and recovered images.
This often leads to blurry outcomes with poor perceptual quality.
- Score: 26.467188665404727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In diverse microscopy modalities, sensors measure only real-valued
intensities. Additionally, the sensor readouts are affected by
Poissonian-distributed photon noise. Traditional restoration algorithms
typically aim to minimize the mean squared error (MSE) between the original and
recovered images. This often leads to blurry outcomes with poor perceptual
quality. Recently, deep diffusion models (DDMs) have proven to be highly
capable of sampling images from the a-posteriori probability of the sought
variables, resulting in visually pleasing high-quality images. These models
have mostly been suggested for real-valued images suffering from Gaussian
noise. In this study, we generalize annealed Langevin Dynamics, a type of DDM,
to tackle the fundamental challenges in optical imaging of complex-valued
objects (and real images) affected by Poisson noise. We apply our algorithm to
various optical scenarios, such as Fourier Ptychography, Phase Retrieval, and
Poisson denoising. Our algorithm is evaluated on simulations and biological
empirical data.
Related papers
- Diff-FMT: Diffusion Models for Fluorescence Molecular Tomography [16.950699640321936]
We propose a FMT reconstruction method based on a denoising diffusion probabilistic model (DDPM)
Through the step-by-step probability sampling mechanism, we achieve fine-grained reconstruction of the image, avoiding issues such as loss of image detail.
We show that Diff-FMT can achieve high-resolution reconstruction images without relying on large-scale datasets.
arXiv Detail & Related papers (2024-10-09T10:41:31Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - Towards High-quality HDR Deghosting with Conditional Diffusion Models [88.83729417524823]
High Dynamic Range (LDR) images can be recovered from several Low Dynamic Range (LDR) images by existing Deep Neural Networks (DNNs) techniques.
DNNs still generate ghosting artifacts when LDR images have saturation and large motion.
We formulate the HDR deghosting problem as an image generation that leverages LDR features as the diffusion model's condition.
arXiv Detail & Related papers (2023-11-02T01:53:55Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Weighted Anisotropic-Isotropic Total Variation for Poisson Denoising [2.6381163133447836]
Poisson noise commonly occurs in images captured by photon-limited imaging systems such as in astronomy and medicine.
We propose a Poisson denoising model by incorporating the weighted anisotropic-isotropic total variation (AITV) as a regularization.
We then develop an alternating direction method of multipliers with a combination of a proximal operator for an efficient implementation.
arXiv Detail & Related papers (2023-07-01T23:25:54Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
Single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
This paper proposes to design a more complex but practical degradation model that consists of randomly shuffled blur, downsampling and noise degradations.
arXiv Detail & Related papers (2021-03-25T17:40:53Z) - Phase Retrieval with Holography and Untrained Priors: Tackling the
Challenges of Low-Photon Nanoscale Imaging [7.984370990908576]
Phase retrieval is the inverse problem of recovering a signal from magnitude-only Fourier measurements.
We introduce a dataset-free deep learning framework for holographic phase retrieval adapted to nanoscale challenges.
arXiv Detail & Related papers (2020-12-14T10:15:07Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.