Distance-wise Graph Contrastive Learning
- URL: http://arxiv.org/abs/2012.07437v1
- Date: Mon, 14 Dec 2020 11:44:45 GMT
- Title: Distance-wise Graph Contrastive Learning
- Authors: Deli Chen, Yanyai Lin, Lei Li, Xuancheng Ren. Peng Li, Jie Zhou, Xu
Sun
- Abstract summary: Contrastive learning (CL) has proven highly effective in graph-based semi-supervised learning (SSL)
We propose our Distance-wise Graph Contrastive Learning (DwGCL) method from two views.
Our experiments on five benchmark graph datasets show that DwGCL can bring a clear improvement over previous GCL methods.
- Score: 21.790413668252828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning (CL) has proven highly effective in graph-based
semi-supervised learning (SSL), since it can efficiently supplement the limited
task information from the annotated nodes in graph. However, existing graph CL
(GCL) studies ignore the uneven distribution of task information across graph
caused by the graph topology and the selection of annotated nodes. They apply
CL to the whole graph evenly, which results in an incongruous combination of CL
and graph learning. To address this issue, we propose to apply CL in the graph
learning adaptively by taking the received task information of each node into
consideration. Firstly, we introduce Group PageRank to measure the node
information gain from graph and find that CL mainly works for nodes that are
topologically far away from the labeled nodes. We then propose our
Distance-wise Graph Contrastive Learning (DwGCL) method from two views:(1) From
the global view of the task information distribution across the graph, we
enhance the CL effect on nodes that are topologically far away from labeled
nodes; (2) From the personal view of each node's received information, we
measure the relative distance between nodes and then we adapt the sampling
strategy of GCL accordingly. Extensive experiments on five benchmark graph
datasets show that DwGCL can bring a clear improvement over previous GCL
methods. Our analysis on eight graph neural network with various types of
architecture and three different annotation settings further demonstrates the
generalizability of DwGCL.
Related papers
- Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
We propose a Local Structure-aware Graph Contrastive representation Learning method (LS-GCL) to model the structural information of nodes from multiple views.
For the local view, the semantic subgraph of each target node is input into a shared GNN encoder to obtain the target node embeddings at the subgraph-level.
For the global view, considering the original graph preserves indispensable semantic information of nodes, we leverage the shared GNN encoder to learn the target node embeddings at the global graph-level.
arXiv Detail & Related papers (2023-08-07T03:23:46Z) - Subgraph Networks Based Contrastive Learning [5.736011243152416]
Graph contrastive learning (GCL) can solve the problem of annotated data scarcity.
Most existing GCL methods focus on the design of graph augmentation strategies and mutual information estimation operations.
We propose a novel framework called subgraph network-based contrastive learning (SGNCL)
arXiv Detail & Related papers (2023-06-06T08:52:44Z) - Graph Contrastive Learning under Heterophily via Graph Filters [51.46061703680498]
Graph contrastive learning (CL) methods learn node representations in a self-supervised manner by maximizing the similarity between the augmented node representations obtained via a GNN-based encoder.
In this work, we propose an effective graph CL method, namely HLCL, for learning graph representations under heterophily.
Our extensive experiments show that HLCL outperforms state-of-the-art graph CL methods on benchmark datasets with heterophily, as well as large-scale real-world graphs, by up to 7%, and outperforms graph supervised learning methods on datasets with heterophily by up to 10%.
arXiv Detail & Related papers (2023-03-11T08:32:39Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Graph Soft-Contrastive Learning via Neighborhood Ranking [19.241089079154044]
Graph Contrastive Learning (GCL) has emerged as a promising approach in the realm of graph self-supervised learning.
We propose a novel paradigm, Graph Soft-Contrastive Learning (GSCL)
GSCL facilitates GCL via neighborhood ranking, avoiding the need to specify absolutely similar pairs.
arXiv Detail & Related papers (2022-09-28T09:52:15Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph.
A novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure.
arXiv Detail & Related papers (2020-09-15T13:59:28Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.