論文の概要: On Lightweight Privacy-Preserving Collaborative Learning for Internet of
Things by Independent Random Projections
- arxiv url: http://arxiv.org/abs/2012.07626v1
- Date: Fri, 11 Dec 2020 12:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-11 12:55:26.171846
- Title: On Lightweight Privacy-Preserving Collaborative Learning for Internet of
Things by Independent Random Projections
- Title(参考訳): 独立ランダム射影によるモノのインターネットのための軽量プライバシー保全協調学習について
- Authors: Linshan Jiang, Rui Tan, Xin Lou, Guosheng Lin
- Abstract要約: モノのインターネット(IoT)は、より良いシステムインテリジェンスを実現する主要なデータ生成インフラストラクチャになります。
本稿では,プライバシ保護型協調学習方式の設計と実装について考察する。
好奇心強い学習コーディネータは、多くのIoTオブジェクトが提供したデータサンプルに基づいて、よりよい機械学習モデルをトレーニングする。
- 参考スコア(独自算出の注目度): 40.586736738492384
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The Internet of Things (IoT) will be a main data generation infrastructure
for achieving better system intelligence. This paper considers the design and
implementation of a practical privacy-preserving collaborative learning scheme,
in which a curious learning coordinator trains a better machine learning model
based on the data samples contributed by a number of IoT objects, while the
confidentiality of the raw forms of the training data is protected against the
coordinator. Existing distributed machine learning and data encryption
approaches incur significant computation and communication overhead, rendering
them ill-suited for resource-constrained IoT objects. We study an approach that
applies independent random projection at each IoT object to obfuscate data and
trains a deep neural network at the coordinator based on the projected data
from the IoT objects. This approach introduces light computation overhead to
the IoT objects and moves most workload to the coordinator that can have
sufficient computing resources. Although the independent projections performed
by the IoT objects address the potential collusion between the curious
coordinator and some compromised IoT objects, they significantly increase the
complexity of the projected data. In this paper, we leverage the superior
learning capability of deep learning in capturing sophisticated patterns to
maintain good learning performance. The extensive comparative evaluation shows
that this approach outperforms other lightweight approaches that apply additive
noisification for differential privacy and/or support vector machines for
learning in the applications with light to moderate data pattern complexities.
- Abstract(参考訳): IoT(Internet of Things)は,より優れたシステムインテリジェンスを実現するための,主要なデータ生成インフラストラクチャになります。
本稿では,多くのIoTオブジェクトが提供したデータに基づいて,学習コーディネータがより優れた機械学習モデルをトレーニングし,トレーニングデータの生形態の機密性をコーディネータに対して保護する,実用的なプライバシー保護協調学習スキームの設計と実装について考察する。
既存の分散機械学習とデータ暗号化アプローチでは、計算と通信のオーバーヘッドが大きくなり、リソース制約のあるIoTオブジェクトには適さない。
我々は、各IoTオブジェクトに対して独立したランダムプロジェクションを適用してデータを難読化し、IoTオブジェクトからの予測データに基づいて、コーディネータでディープニューラルネットワークをトレーニングするアプローチを研究する。
このアプローチでは、IoTオブジェクトに光計算オーバーヘッドを導入し、ほとんどのワークロードを十分な計算リソースを持つコーディネータに移行する。
IoTオブジェクトによって実行される独立したプロジェクションは、好奇心の強いコーディネータといくつかの妥協したIoTオブジェクトとの潜在的な衝突に対処するが、予測されたデータの複雑さを大幅に増加させる。
本稿では,高度なパターンを捉え,優れた学習性能を維持するために,ディープラーニングの優れた学習能力を活用する。
広範な比較評価により、このアプローチは、データパターンの複雑さを軽視するアプリケーションで学習するための差分プライバシおよび/またはサポートベクターマシンに付加ノイズを適用する他の軽量アプローチよりも優れていることが示されている。
関連論文リスト
- Leveraging Foundation Models for Zero-Shot IoT Sensing [5.319176383069102]
ディープラーニングモデルは、エッジIoT(Internet of Things)デバイスにますますデプロイされている。
ZSLは意味情報の助けを借りて、目に見えないクラスのデータを分類することを目的としている。
本研究では、ゼロショットIoTセンシングのためのFMテキストエンコーダによって生成されたセマンティック埋め込みと、IoTデータの埋め込みを一致させる。
論文 参考訳(メタデータ) (2024-07-29T11:16:48Z) - FedSR: A Semi-Decentralized Federated Learning Algorithm for Non-IIDness in IoT System [2.040586739710704]
IoT(Industrial Internet of Things)では、大量のデータが毎日生成される。
プライバシーとセキュリティの問題により、これらのデータをまとめてディープラーニングモデルをトレーニングすることは困難である。
本稿では,集中型フェデレーション学習と分散型フェデレーション学習を組み合わせて,半分散型クラウドエッジデバイス階層型フェデレーション学習フレームワークを設計する。
論文 参考訳(メタデータ) (2024-03-19T09:34:01Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
本稿では,エッジサーバの高性能機能を活用した,エッジ支援型U-Shaped Split Federated Learning (EUSFL) フレームワークを提案する。
このフレームワークでは、フェデレートラーニング(FL)を活用し、データ保持者がデータを共有せずに協調的にモデルをトレーニングできるようにします。
また,データの特徴やラベルが復元攻撃に対して確実に耐えられるように,ラベルDPと呼ばれる新しいノイズ機構を提案する。
論文 参考訳(メタデータ) (2023-11-08T05:14:41Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
産業用IoT(Industrial Internet of Things)の継続的な拡大により、IIoT機器は毎回大量のユーザデータを生成する。
IIoTの分野で、これらの時系列データを効率的かつ安全な方法で管理する方法は、依然として未解決の問題である。
本稿では,無線ネットワーク環境におけるIIoT機器データ管理におけるFL技術の適用について検討する。
論文 参考訳(メタデータ) (2022-02-03T07:12:36Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
我々は、N-BaIoT、FedDetectアルゴリズム、IoTデバイスのシステム設計を使用した合成データセットを含むFedIoTプラットフォームを構築します。
現実的なIoTデバイス(PI)のネットワークにおいて,FedIoTプラットフォームとFedDetectアルゴリズムをモデルおよびシステムパフォーマンスの両方で評価する。
論文 参考訳(メタデータ) (2021-06-15T08:53:42Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study a edge intelligence-based IoT network that a set of edge server learn a shared model using federated learning (FL)。
フェデレーションエッジインテリジェンス(FEI)と呼ばれる新しいフレームワークを提案し、エッジサーバがIoTネットワークのエネルギーコストに応じて必要なデータサンプル数を評価できるようにする。
提案アルゴリズムがIoTネットワークのトポロジ的情報を漏洩したり開示したりしないことを示す。
論文 参考訳(メタデータ) (2020-11-25T12:51:59Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
フェデレーション学習は、中央にデータをアップロードすることなく、分散されたスマートデバイスから大量のデータを分析できる。
本稿では、IoTのリソース制約されたスマートデバイスにまたがるデータから機械学習モデルを効率的にトレーニングするためのDP-PASGDと呼ばれる新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-28T04:32:54Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。