Data-driven model reduction of agent-based systems using the Koopman
generator
- URL: http://arxiv.org/abs/2012.07718v1
- Date: Mon, 14 Dec 2020 17:12:54 GMT
- Title: Data-driven model reduction of agent-based systems using the Koopman
generator
- Authors: Jan-Hendrik Niemann, Stefan Klus, Christof Sch\"utte
- Abstract summary: We show how Koopman operator theory can be used to derive reduced models of agent-based systems.
Our goal is to learn coarse-grained models and to represent the reduced dynamics by ordinary or differential equations.
- Score: 0.3867363075280544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The dynamical behavior of social systems can be described by agent-based
models. Although single agents follow easily explainable rules, complex
time-evolving patterns emerge due to their interaction. The simulation and
analysis of such agent-based models, however, is often prohibitively
time-consuming if the number of agents is large. In this paper, we show how
Koopman operator theory can be used to derive reduced models of agent-based
systems using only simulation or real-world data. Our goal is to learn
coarse-grained models and to represent the reduced dynamics by ordinary or
stochastic differential equations. The new variables are, for instance,
aggregated state variables of the agent-based model, modeling the collective
behavior of larger groups or the entire population. Using benchmark problems
with known coarse-grained models, we demonstrate that the obtained reduced
systems are in good agreement with the analytical results, provided that the
numbers of agents is sufficiently large.
Related papers
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Information theory for data-driven model reduction in physics and biology [0.0]
We develop a systematic approach based on the information bottleneck to identify the relevant variables.
We show that in the limit of high compression, the relevant variables are directly determined by the slowest-decaying eigenfunctions.
It provides a firm foundation to construct interpretable deep learning tools that perform model reduction.
arXiv Detail & Related papers (2023-12-11T18:39:05Z) - Neural parameter calibration for large-scale multi-agent models [0.7734726150561089]
We present a method to retrieve accurate probability densities for parameters using neural equations.
The two combined create a powerful tool that can quickly estimate densities on model parameters, even for very large systems.
arXiv Detail & Related papers (2022-09-27T17:36:26Z) - Data-driven Control of Agent-based Models: an Equation/Variable-free
Machine Learning Approach [0.0]
We present an Equation/Variable free machine learning (EVFML) framework for the control of the collective dynamics of complex/multiscale systems.
The proposed implementation consists of three steps: (A) from high-dimensional agent-based simulations, machine learning (in particular, non-linear manifold learning (DMs))
We exploit the Equation-free approach to perform numerical bifurcation analysis of the emergent dynamics.
We design data-driven embedded wash-out controllers that drive the agent-based simulators to their intrinsic, imprecisely known, emergent open-loop unstable steady-states.
arXiv Detail & Related papers (2022-07-12T18:16:22Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Validation and Inference of Agent Based Models [0.0]
Agent Based Modelling (ABM) is a computational framework for simulating the behaviours and interactions of autonomous agents.
Recent research in ABC has yielded increasingly efficient algorithms for calculating the approximate likelihood.
These are investigated and compared using a pedestrian model in the Hamilton CBD.
arXiv Detail & Related papers (2021-07-08T05:53:37Z) - Abstraction of Markov Population Dynamics via Generative Adversarial
Nets [2.1485350418225244]
A strategy to reduce computational load is to abstract the population model, replacing it with a simpler model, faster to simulate.
Here we pursue this idea, building on previous works and constructing a generator capable of producing trajectories in continuous space and discrete time.
This generator is learned automatically from simulations of the original model in a Generative Adversarial setting.
arXiv Detail & Related papers (2021-06-24T12:57:49Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.