Abstraction of Markov Population Dynamics via Generative Adversarial
Nets
- URL: http://arxiv.org/abs/2106.12981v1
- Date: Thu, 24 Jun 2021 12:57:49 GMT
- Title: Abstraction of Markov Population Dynamics via Generative Adversarial
Nets
- Authors: Francesca Cairoli, Ginevra Carbone, Luca Bortolussi
- Abstract summary: A strategy to reduce computational load is to abstract the population model, replacing it with a simpler model, faster to simulate.
Here we pursue this idea, building on previous works and constructing a generator capable of producing trajectories in continuous space and discrete time.
This generator is learned automatically from simulations of the original model in a Generative Adversarial setting.
- Score: 2.1485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Markov Population Models are a widespread formalism used to model the
dynamics of complex systems, with applications in Systems Biology and many
other fields. The associated Markov stochastic process in continuous time is
often analyzed by simulation, which can be costly for large or stiff systems,
particularly when a massive number of simulations has to be performed (e.g. in
a multi-scale model). A strategy to reduce computational load is to abstract
the population model, replacing it with a simpler stochastic model, faster to
simulate. Here we pursue this idea, building on previous works and constructing
a generator capable of producing stochastic trajectories in continuous space
and discrete time. This generator is learned automatically from simulations of
the original model in a Generative Adversarial setting. Compared to previous
works, which rely on deep neural networks and Dirichlet processes, we explore
the use of state of the art generative models, which are flexible enough to
learn a full trajectory rather than a single transition kernel.
Related papers
- Data-Driven Stochastic Closure Modeling via Conditional Diffusion Model and Neural Operator [0.0]
Closure models are widely used in simulating complex multiscale dynamical systems such as turbulence and the earth system.
For systems without a clear scale, generalization deterministic and local closure models often lack enough capability.
We propose a datadriven modeling framework for constructing neural operator and non-local closure models.
arXiv Detail & Related papers (2024-08-06T05:21:31Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
This work introduces a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states.
Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold.
This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows.
arXiv Detail & Related papers (2024-06-17T10:21:01Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - GenFormer: A Deep-Learning-Based Approach for Generating Multivariate
Stochastic Processes [5.679243827959339]
We propose a Transformer-based deep learning model that learns a mapping between a Markov state sequence and time series values.
The GenFormer model is applied to simulate synthetic wind speed data at various stations in Florida to calculate exceedance probabilities for risk management.
arXiv Detail & Related papers (2024-02-03T03:50:18Z) - Micro-Macro Consistency in Multiscale Modeling: Score-Based Model
Assisted Sampling of Fast/Slow Dynamical Systems [0.0]
In the study of physics-based multi-time-scale dynamical systems, techniques have been developed for enhancing sampling.
In the field of Machine Learning, a generic goal of generative models is to sample from a target density, after training on empirical samples from this density.
In this work, we show that that SGMs can be used in such a coupling framework to improve sampling in multiscale dynamical systems.
arXiv Detail & Related papers (2023-12-10T00:46:37Z) - Learning to Simulate: Generative Metamodeling via Quantile Regression [2.2518304637809714]
We propose a new metamodeling concept, called generative metamodeling, which aims to construct a "fast simulator of the simulator"
Once constructed, a generative metamodel can generate a large amount of random outputs as soon as the inputs are specified.
We propose a new algorithm -- quantile-regression-based generative metamodeling (QRGMM) -- and study its convergence and rate of convergence.
arXiv Detail & Related papers (2023-11-29T16:46:24Z) - Accurate generation of stochastic dynamics based on multi-model
Generative Adversarial Networks [0.0]
Generative Adversarial Networks (GANs) have shown immense potential in fields such as text and image generation.
Here we quantitatively test this approach by applying it to a prototypical process on a lattice.
Importantly, the discreteness of the model is retained despite the noise.
arXiv Detail & Related papers (2023-05-25T10:41:02Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.