論文の概要: Iterative label cleaning for transductive and semi-supervised few-shot
learning
- arxiv url: http://arxiv.org/abs/2012.07962v1
- Date: Mon, 14 Dec 2020 21:54:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-08 14:44:42.918658
- Title: Iterative label cleaning for transductive and semi-supervised few-shot
learning
- Title(参考訳): 半教師付き複数ショット学習のための反復ラベルクリーニング
- Authors: Michalis Lazarou, Yannis Avrithis, Tania Stathaki
- Abstract要約: わずかなショット学習は、新しいタスクが監督とデータの両方を制限することで解決されるような、学習表現と知識の獲得にかかっている。
ラベル付きおよびラベルなしデータ分布の多様体構造を利用して擬似ラベルを予測するアルゴリズムを提案する。
提案手法は,EmphminiImageNet,emphImageNet,CUB,CIFAR-FSの4つのベンチマークデータセット上に,新たな技術状況を設定する。
- 参考スコア(独自算出の注目度): 17.381648488344222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning amounts to learning representations and acquiring knowledge
such that novel tasks may be solved with both supervision and data being
limited. Improved performance is possible by transductive inference, where the
entire test set is available concurrently, and semi-supervised learning, where
more unlabeled data is available. These problems are closely related because
there is little or no adaptation of the representation in novel tasks.
Focusing on these two settings, we introduce a new algorithm that leverages
the manifold structure of the labeled and unlabeled data distribution to
predict pseudo-labels, while balancing over classes and using the loss value
distribution of a limited-capacity classifier to select the cleanest labels,
iterately improving the quality of pseudo-labels. Our solution sets new state
of the art on four benchmark datasets, namely \emph{mini}ImageNet,
\emph{tiered}ImageNet, CUB and CIFAR-FS, while being robust over feature space
pre-processing and the quantity of available data.
- Abstract(参考訳): わずかなショット学習は、新しいタスクが監督とデータの両方を制限することで解決されるような、学習表現と知識の獲得にかかっている。
トランスダクティブ推論(Transductive Inference)ではテストセット全体が同時に利用可能になり、半教師付き学習ではラベルなしのデータも利用可能になる。
これらの問題は、新しいタスクにおける表現の適応がほとんどあるいは全くないため、密接に関連している。
これら2つの設定に着目して,ラベル付きおよび未ラベル付きデータ分布の多様体構造を利用して擬似ラベルを予測し,クラス間のバランスを保ちながら,最小容量の分類器の損失値分布を用いてクリーンなラベルを選択するアルゴリズムを導入し,擬似ラベルの品質を反復的に改善する。
当社のソリューションは,4つのベンチマークデータセット,すなわち \emph{mini} ImageNet, \emph{tiered}ImageNet, CUB, CIFAR-FSに対して,機能領域の事前処理と利用可能なデータの量に対して堅牢であると同時に,新たな技術状況を設定する。
関連論文リスト
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
現在の最先端のLTSSLアプローチは、大規模な未ラベルデータに対して高品質な擬似ラベルに依存している。
本稿では,長期学習における様々な提案を統一する新しい確率的枠組みを提案する。
我々は、信頼度とスムーズな擬似ラベルを用いて、我々のフレームワークをラベルなしデータに拡張する、連続的コントラスト学習手法であるCCLを導入する。
論文 参考訳(メタデータ) (2024-10-08T15:06:10Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
本稿では,ラベルの修正を伴わずに,混乱したサンプルを積極的に使用することを提案する。
仮想カテゴリー(VC)は、モデルの最適化に安全に貢献できるように、各混乱したサンプルに割り当てられる。
私たちの興味深い発見は、密集した視覚タスクにおけるVC学習の利用に注目しています。
論文 参考訳(メタデータ) (2023-12-02T16:23:52Z) - Adaptive Anchor Label Propagation for Transductive Few-Shot Learning [18.29463308334406]
ラベル付きデータによる画像の分類の問題に対処する例は少ない。
識別可能な損失関数を最小化することによりラベル付きデータの特徴埋め込みを適応する新しいアルゴリズムを提案する。
提案アルゴリズムは,1ショット設定と5ショット設定において,標準ラベル伝搬アルゴリズムを最大7%,2%向上させる。
論文 参考訳(メタデータ) (2023-10-30T20:29:31Z) - Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object
Detection with Repeated Labels [6.872072177648135]
そこで本研究では,基礎的真理推定手法に適合する新しい局所化アルゴリズムを提案する。
また,本アルゴリズムは,TexBiGデータセット上でのトレーニングにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-18T13:08:44Z) - Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection [1.6249267147413524]
半教師付きオブジェクト検出(SSOD)は、擬似ラベルに基づくエンドツーエンド手法の開発において大きな進歩を遂げている。
多くの手法は、擬似ラベルジェネレータの有効性を妨げるクラス不均衡のため、課題に直面している。
本稿では,低品質な擬似ラベルの根本原因と,ラベル生成品質を改善するための新しい学習メカニズムについて検討する。
論文 参考訳(メタデータ) (2023-06-04T06:01:53Z) - Enhancing CLIP with CLIP: Exploring Pseudolabeling for Limited-Label
Prompt Tuning [11.284317518288153]
本稿では, 擬似ラベル, すなわちラベルなしデータのラベルを用いて, 即時チューニングによるCLIPの強化について検討する。
半教師付き, トランスダクティブなゼロショット, 教師なし学習といった学習パラダイムは, すべて同じ損失関数の最適化とみなすことができる。
1) 擬似ラベルを反復的に洗練する未探索プロンプトチューニング戦略は,半教師あり学習では19.5ポイント,帰納的ゼロショット学習では28.4ポイント,教師なし学習では15.2ポイント,CLIP精度を継続的に向上させる。
論文 参考訳(メタデータ) (2023-06-02T16:43:05Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
我々は、Model-Aware K-center (MAK)と呼ばれるオープンワールドなラベルなしデータサンプリングフレームワークを提案する。
MAKは、尾性、近接性、多様性の3つの単純な原則に従う。
我々はMAKが学習した機能の全体的な表現品質とクラスバランス性の両方を継続的に改善できることを実証した。
論文 参考訳(メタデータ) (2021-11-01T15:09:41Z) - OpenCoS: Contrastive Semi-supervised Learning for Handling Open-set
Unlabeled Data [65.19205979542305]
ラベル付けされていないデータには、実際にはクラス外のサンプルが含まれる。
OpenCoSは、このリアルな半教師付き学習シナリオを扱う方法である。
論文 参考訳(メタデータ) (2021-06-29T06:10:05Z) - Boosting Semi-Supervised Face Recognition with Noise Robustness [54.342992887966616]
本稿では,自動ラベルによるラベル雑音に対して頑健な半教師付き顔認識に対する効果的な解法を提案する。
そこで我々は,gnが強化するロバストな学習能力に基づく,ノイズロバスト学習ラベリング(nroll)という,半教師付き顔認識ソリューションを開発した。
論文 参考訳(メタデータ) (2021-05-10T14:43:11Z) - Relieving the Plateau: Active Semi-Supervised Learning for a Better
Landscape [2.3046646540823916]
semi-supervised learning (ssl) はラベル付きデータよりもアクセスしやすいラベルなしデータを活用する。
active learning (al)は、ラベルなしのインスタンスを選択して、ラベル付きデータの少ないパフォーマンスを期待する。
本稿では,ラベル付き集合を含む問題条件を改善するためにラベル付きデータを選択するALアルゴリズムである収束率制御(CRC)を提案する。
論文 参考訳(メタデータ) (2021-04-08T06:03:59Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
連続学習は、入力されたデータが完全にラベル付けされていると仮定し、実際のアプリケーションでは適用できないかもしれない。
我々は、条件付き生成逆数ネットワーク(GAN)を用いた分類器を相互に学習するために、識別器整合(ORDisCo)を用いたディープオンライン再生を提案する。
ORDisCo が SSCL の様々な半教師付き学習ベンチマークデータセットで大幅なパフォーマンス向上を達成していることを示します。
論文 参考訳(メタデータ) (2021-01-02T09:04:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。