Iterative label cleaning for transductive and semi-supervised few-shot
learning
- URL: http://arxiv.org/abs/2012.07962v3
- Date: Tue, 28 Mar 2023 15:05:23 GMT
- Title: Iterative label cleaning for transductive and semi-supervised few-shot
learning
- Authors: Michalis Lazarou, Tania Stathaki, Yannis Avrithis
- Abstract summary: Few-shot learning amounts to learning representations and acquiring knowledge such that novel tasks may be solved with both supervision and data being limited.
We introduce a new algorithm that leverages the manifold structure of the labeled and unlabeled data distribution to predict pseudo-labels.
Our solution surpasses or matches the state of the art results on four benchmark datasets.
- Score: 16.627512688664513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning amounts to learning representations and acquiring knowledge
such that novel tasks may be solved with both supervision and data being
limited. Improved performance is possible by transductive inference, where the
entire test set is available concurrently, and semi-supervised learning, where
more unlabeled data is available. Focusing on these two settings, we introduce
a new algorithm that leverages the manifold structure of the labeled and
unlabeled data distribution to predict pseudo-labels, while balancing over
classes and using the loss value distribution of a limited-capacity classifier
to select the cleanest labels, iteratively improving the quality of
pseudo-labels. Our solution surpasses or matches the state of the art results
on four benchmark datasets, namely miniImageNet, tieredImageNet, CUB and
CIFAR-FS, while being robust over feature space pre-processing and the quantity
of available data. The publicly available source code can be found in
https://github.com/MichalisLazarou/iLPC.
Related papers
- Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Adaptive Anchor Label Propagation for Transductive Few-Shot Learning [18.29463308334406]
Few-shot learning addresses the issue of classifying images using limited labeled data.
We propose a novel algorithm that adapts the feature embeddings of the labeled data by minimizing a differentiable loss function.
Our algorithm outperforms the standard label propagation algorithm by as much as 7% and 2% in the 1-shot and 5-shot settings respectively.
arXiv Detail & Related papers (2023-10-30T20:29:31Z) - Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object
Detection with Repeated Labels [6.872072177648135]
We propose a novel localization algorithm that adapts well-established ground truth estimation methods.
Our algorithm also shows superior performance during training on the TexBiG dataset.
arXiv Detail & Related papers (2023-09-18T13:08:44Z) - Revisiting Class Imbalance for End-to-end Semi-Supervised Object
Detection [1.6249267147413524]
Semi-supervised object detection (SSOD) has made significant progress with the development of pseudo-label-based end-to-end methods.
Many methods face challenges due to class imbalance, which hinders the effectiveness of the pseudo-label generator.
In this paper, we examine the root causes of low-quality pseudo-labels and present novel learning mechanisms to improve the label generation quality.
arXiv Detail & Related papers (2023-06-04T06:01:53Z) - Enhancing CLIP with CLIP: Exploring Pseudolabeling for Limited-Label
Prompt Tuning [11.284317518288153]
We study the use of pseudolabels, i.e., labels for unlabeled data, to enhance CLIP via prompt tuning.
We observe that learning paradigms such as semi-supervised, transductive zero-shot, and unsupervised learning can all be seen as optimizing the same loss function.
We find that (1) unexplored prompt tuning strategies that iteratively refine pseudolabels consistently improve CLIP accuracy, by 19.5 points in semi-supervised learning, by 28.4 points in transductive zero-shot learning, and by 15.2 points in unsupervised learning.
arXiv Detail & Related papers (2023-06-02T16:43:05Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
We present an open-world unlabeled data sampling framework called Model-Aware K-center (MAK)
MAK follows three simple principles: tailness, proximity, and diversity.
We demonstrate that MAK can consistently improve both the overall representation quality and the class balancedness of the learned features.
arXiv Detail & Related papers (2021-11-01T15:09:41Z) - OpenCoS: Contrastive Semi-supervised Learning for Handling Open-set
Unlabeled Data [65.19205979542305]
Unlabeled data may include out-of-class samples in practice.
OpenCoS is a method for handling this realistic semi-supervised learning scenario.
arXiv Detail & Related papers (2021-06-29T06:10:05Z) - Boosting Semi-Supervised Face Recognition with Noise Robustness [54.342992887966616]
This paper presents an effective solution to semi-supervised face recognition that is robust to the label noise aroused by the auto-labelling.
We develop a semi-supervised face recognition solution, named Noise Robust Learning-Labelling (NRoLL), which is based on the robust training ability empowered by GN.
arXiv Detail & Related papers (2021-05-10T14:43:11Z) - Relieving the Plateau: Active Semi-Supervised Learning for a Better
Landscape [2.3046646540823916]
Semi-supervised learning (SSL) leverages unlabeled data that are more accessible than their labeled counterparts.
Active learning (AL) selects unlabeled instances to be annotated by a human-in-the-loop in hopes of better performance with less labeled data.
We propose convergence rate control (CRC), an AL algorithm that selects unlabeled data to improve the problem conditioning upon inclusion to the labeled set.
arXiv Detail & Related papers (2021-04-08T06:03:59Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.