Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels
- URL: http://arxiv.org/abs/2312.01169v2
- Date: Mon, 12 Feb 2024 12:59:58 GMT
- Title: Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels
- Authors: Changrui Chen, Jungong Han, Kurt Debattista
- Abstract summary: This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
- Score: 63.16824565919966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the costliness of labelled data in real-world applications,
semi-supervised learning, underpinned by pseudo labelling, is an appealing
solution. However, handling confusing samples is nontrivial: discarding
valuable confusing samples would compromise the model generalisation while
using them for training would exacerbate the issue of confirmation bias caused
by the resulting inevitable mislabelling. To solve this problem, this paper
proposes to use confusing samples proactively without label correction.
Specifically, a Virtual Category (VC) is assigned to each confusing sample in
such a way that it can safely contribute to the model optimisation even without
a concrete label. This provides an upper bound for inter-class information
sharing capacity, which eventually leads to a better embedding space. Extensive
experiments on two mainstream dense prediction tasks -- semantic segmentation
and object detection, demonstrate that the proposed VC learning significantly
surpasses the state-of-the-art, especially when only very few labels are
available. Our intriguing findings highlight the usage of VC learning in dense
vision tasks.
Related papers
- Class-aware and Augmentation-free Contrastive Learning from Label Proportion [19.41511190742059]
Learning from Label Proportion (LLP) is a weakly supervised learning scenario in which training data is organized into predefined bags of instances.
We propose an augmentation-free contrastive framework TabLLP-BDC that introduces class-aware supervision at the instance level.
Our solution features a two-stage Bag Difference Contrastive (BDC) learning mechanism that establishes robust class-aware instance-level supervision.
arXiv Detail & Related papers (2024-08-13T09:04:47Z) - VLM-CPL: Consensus Pseudo Labels from Vision-Language Models for Human Annotation-Free Pathological Image Classification [23.08368823707528]
We present a novel human annotation-free method for pathology image classification by leveraging pre-trained Vision-Language Models (VLMs)
We introduce VLM-CPL, a novel approach based on consensus pseudo labels that integrates two noisy label filtering techniques with a semi-supervised learning strategy.
Experimental results showed that our method obtained an accuracy of 87.1% and 95.1% on the HPH and LC25K datasets, respectively.
arXiv Detail & Related papers (2024-03-23T13:24:30Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning.
We propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL)
Our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition.
arXiv Detail & Related papers (2024-01-24T09:39:45Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - Semi-supervised Object Detection via Virtual Category Learning [68.26956850996976]
This paper proposes to use confusing samples proactively without label correction.
Specifically, a virtual category (VC) is assigned to each confusing sample.
It is attributed to specifying the embedding distance between the training sample and the virtual category.
arXiv Detail & Related papers (2022-07-07T16:59:53Z) - One Positive Label is Sufficient: Single-Positive Multi-Label Learning
with Label Enhancement [71.9401831465908]
We investigate single-positive multi-label learning (SPMLL) where each example is annotated with only one relevant label.
A novel method named proposed, i.e., Single-positive MultI-label learning with Label Enhancement, is proposed.
Experiments on benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-06-01T14:26:30Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
arXiv Detail & Related papers (2020-12-09T02:36:52Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.