A Framework for Efficient Robotic Manipulation
- URL: http://arxiv.org/abs/2012.07975v1
- Date: Mon, 14 Dec 2020 22:18:39 GMT
- Title: A Framework for Efficient Robotic Manipulation
- Authors: Albert Zhan, Philip Zhao, Lerrel Pinto, Pieter Abbeel, Michael Laskin
- Abstract summary: We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
- Score: 79.10407063260473
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-efficient learning of manipulation policies from visual observations is
an outstanding challenge for real-robot learning. While deep reinforcement
learning (RL) algorithms have shown success learning policies from visual
observations, they still require an impractical number of real-world data
samples to learn effective policies. However, recent advances in unsupervised
representation learning and data augmentation significantly improved the sample
efficiency of training RL policies on common simulated benchmarks. Building on
these advances, we present a Framework for Efficient Robotic Manipulation
(FERM) that utilizes data augmentation and unsupervised learning to achieve
extremely sample-efficient training of robotic manipulation policies with
sparse rewards. We show that, given only 10 demonstrations, a single robotic
arm can learn sparse-reward manipulation policies from pixels, such as
reaching, picking, moving, pulling a large object, flipping a switch, and
opening a drawer in just 15-50 minutes of real-world training time. We include
videos, code, and additional information on the project website --
https://sites.google.com/view/efficient-robotic-manipulation.
Related papers
- Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning [47.785786984974855]
We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks.
Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies.
We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution.
arXiv Detail & Related papers (2024-10-29T08:12:20Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous
Manipulation [61.7171775202833]
We introduce an efficient system for learning dexterous manipulation skills withReinforcement learning.
The main idea of our approach is the integration of recent advances in sample-efficient RL and replay buffer bootstrapping.
Our system completes the real-world training cycle by incorporating learned resets via an imitation-based pickup policy.
arXiv Detail & Related papers (2023-09-06T19:05:31Z) - Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation [8.939008609565368]
In this paper, we demonstrate the efficacy of learning image keypoints via the Dense Correspondence pretext task for downstream policy learning.
We evaluate our approach on diverse robot manipulation tasks, compare it to other visual representation learning approaches, and demonstrate its flexibility and effectiveness for sample-efficient policy learning.
arXiv Detail & Related papers (2022-05-17T13:15:07Z) - Accelerating Robot Learning of Contact-Rich Manipulations: A Curriculum
Learning Study [4.045850174820418]
This paper presents a study for accelerating robot learning of contact-rich manipulation tasks based on Curriculum Learning combined with Domain Randomization (DR)
We tackle complex industrial assembly tasks with position-controlled robots, such as insertion tasks.
Results also show that even when training only in simulation with toy tasks, our method can learn policies that can be transferred to the real-world robot.
arXiv Detail & Related papers (2022-04-27T11:08:39Z) - Efficient Robotic Manipulation Through Offline-to-Online Reinforcement
Learning and Goal-Aware State Information [5.604859261995801]
We propose a unified offline-to-online RL framework that resolves the transition performance drop issue.
We introduce goal-aware state information to the RL agent, which can greatly reduce task complexity and accelerate policy learning.
Our framework achieves great training efficiency and performance compared with the state-of-the-art methods in multiple robotic manipulation tasks.
arXiv Detail & Related papers (2021-10-21T05:34:25Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.