Coupled Layer-wise Graph Convolution for Transportation Demand
Prediction
- URL: http://arxiv.org/abs/2012.08080v1
- Date: Tue, 15 Dec 2020 04:10:09 GMT
- Title: Coupled Layer-wise Graph Convolution for Transportation Demand
Prediction
- Authors: Junchen Ye, Leilei Sun, Bowen Du, Yanjie Fu, Hui Xiong
- Abstract summary: Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction.
This paper provides a novel graph convolutional network for transportation demand prediction.
Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi.
- Score: 43.23120462553671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Convolutional Network (GCN) has been widely applied in transportation
demand prediction due to its excellent ability to capture non-Euclidean spatial
dependence among station-level or regional transportation demands. However, in
most of the existing research, the graph convolution was implemented on a
heuristically generated adjacency matrix, which could neither reflect the real
spatial relationships of stations accurately, nor capture the multi-level
spatial dependence of demands adaptively. To cope with the above problems, this
paper provides a novel graph convolutional network for transportation demand
prediction. Firstly, a novel graph convolution architecture is proposed, which
has different adjacency matrices in different layers and all the adjacency
matrices are self-learned during the training process. Secondly, a layer-wise
coupling mechanism is provided, which associates the upper-level adjacency
matrix with the lower-level one. It also reduces the scale of parameters in our
model. Lastly, a unitary network is constructed to give the final prediction
result by integrating the hidden spatial states with gated recurrent unit,
which could capture the multi-level spatial dependence and temporal dynamics
simultaneously. Experiments have been conducted on two real-world datasets, NYC
Citi Bike and NYC Taxi, and the results demonstrate the superiority of our
model over the state-of-the-art ones.
Related papers
- Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Spatial-temporal traffic modeling with a fusion graph reconstructed by
tensor decomposition [10.104097475236014]
Graph convolutional networks (GCNs) have been widely used in traffic flow prediction.
The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs.
This paper proposes reconstructing the binary adjacency matrix via tensor decomposition.
arXiv Detail & Related papers (2022-12-12T01:44:52Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Spatial-Temporal Adaptive Graph Convolution with Attention Network for
Traffic Forecasting [4.1700160312787125]
We propose a novel network, Spatial-Temporal Adaptive graph convolution with Attention Network (STAAN) for traffic forecasting.
Firstly, we adopt an adaptive dependency matrix instead of using a pre-defined matrix during GCN processing to infer the inter-dependencies among nodes.
Secondly, we integrate PW-attention based on graph attention network which is designed for global dependency, and GCN as spatial block.
arXiv Detail & Related papers (2022-06-07T09:08:35Z) - PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting [4.14360329494344]
We propose a novel traffic forecasting framework called Progressive Graph Convolutional Network (PGCN)
PGCN constructs a set of graphs by progressively adapting to online input data during the training and testing phases.
The proposed model achieves state-of-the-art performance with consistency in all datasets.
arXiv Detail & Related papers (2022-02-18T02:15:44Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - Bayesian Graph Convolutional Network for Traffic Prediction [23.30484840210517]
We propose a Bayesian Graph Convolutional Network (BGCN) framework to alleviate these issues.
Under this framework, the graph structure is viewed as a random realization from a parametric generative model.
We verify the effectiveness of our method on five real-world datasets, and the experimental results demonstrate that BGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T14:19:37Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z) - Physical-Virtual Collaboration Modeling for Intra-and Inter-Station
Metro Ridership Prediction [116.66657468425645]
We propose a unified Physical-Virtual Collaboration Graph Network (PVCGN), which can effectively learn the complex ridership patterns from the tailor-designed graphs.
Specifically, a physical graph is directly built based on the realistic topology of the studied metro system.
A similarity graph and a correlation graph are built with virtual topologies under the guidance of the inter-station passenger flow similarity and correlation.
arXiv Detail & Related papers (2020-01-14T16:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.