Towards open and expandable cognitive AI architectures for large-scale
multi-agent human-robot collaborative learning
- URL: http://arxiv.org/abs/2012.08174v2
- Date: Mon, 29 Mar 2021 17:15:00 GMT
- Title: Towards open and expandable cognitive AI architectures for large-scale
multi-agent human-robot collaborative learning
- Authors: Georgios Th. Papadopoulos, Margherita Antona, Constantine Stephanidis
- Abstract summary: A novel cognitive architecture for multi-agent LfD robotic learning is introduced, targeting to enable the reliable deployment of open, scalable and expandable robotic systems.
The conceptualization relies on employing multiple AI-empowered cognitive processes that operate at the edge nodes of a network of robotic platforms.
The applicability of the proposed framework is explained using an example of a real-world industrial case study.
- Score: 5.478764356647437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from Demonstration (LfD) constitutes one of the most robust
methodologies for constructing efficient cognitive robotic systems. Despite the
large body of research works already reported, current key technological
challenges include those of multi-agent learning and long-term autonomy.
Towards this direction, a novel cognitive architecture for multi-agent LfD
robotic learning is introduced, targeting to enable the reliable deployment of
open, scalable and expandable robotic systems in large-scale and complex
environments. In particular, the designed architecture capitalizes on the
recent advances in the Artificial Intelligence (AI) field, by establishing a
Federated Learning (FL)-based framework for incarnating a multi-human
multi-robot collaborative learning environment. The fundamental
conceptualization relies on employing multiple AI-empowered cognitive processes
(implementing various robotic tasks) that operate at the edge nodes of a
network of robotic platforms, while global AI models (underpinning the
aforementioned robotic tasks) are collectively created and shared among the
network, by elegantly combining information from a large number of human-robot
interaction instances. Regarding pivotal novelties, the designed cognitive
architecture a) introduces a new FL-based formalism that extends the
conventional LfD learning paradigm to support large-scale multi-agent
operational settings, b) elaborates previous FL-based self-learning robotic
schemes so as to incorporate the human in the learning loop and c) consolidates
the fundamental principles of FL with additional sophisticated AI-enabled
learning methodologies for modelling the multi-level inter-dependencies among
the robotic tasks. The applicability of the proposed framework is explained
using an example of a real-world industrial case study for agile
production-based Critical Raw Materials (CRM) recovery.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Imperative Learning: A Self-supervised Neural-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
We introduce a new self-supervised neural-symbolic (NeSy) computational framework, imperative learning (IL) for robot autonomy.
We formulate IL as a special bilevel optimization (BLO) which enables reciprocal learning over the three modules.
We show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
arXiv Detail & Related papers (2024-06-23T12:02:17Z) - A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
Recent advances in computer vision, natural language processing, and multi-modality learning have shown that the foundation models have superhuman capabilities for specific tasks.
This survey aims to provide a comprehensive and up-to-date overview of foundation models in robotics, focusing on autonomous manipulation and encompassing high-level planning and low-level control.
arXiv Detail & Related papers (2024-02-04T07:55:01Z) - Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis [82.59451639072073]
General-purpose robots operate seamlessly in any environment, with any object, and utilize various skills to complete diverse tasks.
As a community, we have been constraining most robotic systems by designing them for specific tasks, training them on specific datasets, and deploying them within specific environments.
Motivated by the impressive open-set performance and content generation capabilities of web-scale, large-capacity pre-trained models, we devote this survey to exploring how foundation models can be applied to general-purpose robotics.
arXiv Detail & Related papers (2023-12-14T10:02:55Z) - Online Learning and Planning in Cognitive Hierarchies [10.28577981317938]
We extend an existing formal framework to model complex integrated reasoning behaviours of robotic systems.
New framework allows for a more flexible modelling of the interactions between different reasoning components.
arXiv Detail & Related papers (2023-10-18T23:53:51Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - OpenDR: An Open Toolkit for Enabling High Performance, Low Footprint
Deep Learning for Robotics [0.0]
We present the Open Deep Learning Toolkit for Robotics (OpenDR)
OpenDR aims at developing an open, non-proprietary, efficient, and modular toolkit that can be easily used by robotics companies and research institutions.
arXiv Detail & Related papers (2022-03-01T12:59:59Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.