Bayesian Inverse Physics for Neuro-Symbolic Robot Learning
- URL: http://arxiv.org/abs/2506.08756v1
- Date: Tue, 10 Jun 2025 12:53:31 GMT
- Title: Bayesian Inverse Physics for Neuro-Symbolic Robot Learning
- Authors: Octavio Arriaga, Rebecca Adam, Melvin Laux, Lisa Gutzeit, Marco Ragni, Jan Peters, Frank Kirchner,
- Abstract summary: Real-world robotic applications require adaptive, interpretable, and data-efficient learning paradigms.<n>We introduce a conceptual framework for combining data-driven learning with deliberate, structured reasoning.<n>We argue that such hybrid neuro-symbolic architectures are essential for the next generation of autonomous systems.
- Score: 13.63049975599771
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world robotic applications, from autonomous exploration to assistive technologies, require adaptive, interpretable, and data-efficient learning paradigms. While deep learning architectures and foundation models have driven significant advances in diverse robotic applications, they remain limited in their ability to operate efficiently and reliably in unknown and dynamic environments. In this position paper, we critically assess these limitations and introduce a conceptual framework for combining data-driven learning with deliberate, structured reasoning. Specifically, we propose leveraging differentiable physics for efficient world modeling, Bayesian inference for uncertainty-aware decision-making, and meta-learning for rapid adaptation to new tasks. By embedding physical symbolic reasoning within neural models, robots could generalize beyond their training data, reason about novel situations, and continuously expand their knowledge. We argue that such hybrid neuro-symbolic architectures are essential for the next generation of autonomous systems, and to this end, we provide a research roadmap to guide and accelerate their development.
Related papers
- World Models for Cognitive Agents: Transforming Edge Intelligence in Future Networks [55.90051810762702]
We present a comprehensive overview of world models, highlighting their architecture, training paradigms, and applications across prediction, generation, planning, and causal reasoning.<n>We propose Wireless Dreamer, a novel world model-based reinforcement learning framework tailored for wireless edge intelligence optimization.
arXiv Detail & Related papers (2025-05-31T06:43:00Z) - Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - Personalized Artificial General Intelligence (AGI) via Neuroscience-Inspired Continuous Learning Systems [3.764721243654025]
Current approaches largely depend on expanding model parameters, which improves task-specific performance but falls short in enabling continuous, adaptable, and generalized learning.<n>This paper reviews the state of continual learning and neuroscience-inspired AI, and proposes a novel architecture for Personalized AGI that integrates brain-like learning mechanisms for edge deployment.<n>Building on these insights, we outline an AI architecture that features complementary fast-and-slow learning modules, synaptic self-optimization, and memory-efficient model updates to support on-device lifelong adaptation.
arXiv Detail & Related papers (2025-04-27T16:10:17Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
This work advances model-based reinforcement learning by addressing the challenges of long-horizon prediction, error accumulation, and sim-to-real transfer.<n>By providing a scalable and robust framework, the introduced methods pave the way for adaptive and efficient robotic systems in real-world applications.
arXiv Detail & Related papers (2025-01-17T10:39:09Z) - Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
We introduce a new self-supervised neuro-symbolic (NeSy) computational framework, imperative learning (IL) for robot autonomy.<n>We formulate IL as a special bilevel optimization (BLO) which enables reciprocal learning over the three modules.<n>We show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
arXiv Detail & Related papers (2024-06-23T12:02:17Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
Article argues that embodied intelligence is a key driver for the advancement of machine learning technology.
We highlight challenges and opportunities specific to embodied intelligence.
We propose research directions which may significantly advance the state-of-the-art in robot learning.
arXiv Detail & Related papers (2021-10-28T16:04:01Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
Reinforcement learning algorithms have proven to be capable of solving complicated robotics tasks in an end-to-end fashion.
We propose a framework combining the learning of a low-dimensional state representation, from high-dimensional observations coming from the robot's raw sensory readings, with the learning of the optimal policy.
arXiv Detail & Related papers (2021-07-04T15:42:01Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z) - Towards open and expandable cognitive AI architectures for large-scale
multi-agent human-robot collaborative learning [5.478764356647437]
A novel cognitive architecture for multi-agent LfD robotic learning is introduced, targeting to enable the reliable deployment of open, scalable and expandable robotic systems.
The conceptualization relies on employing multiple AI-empowered cognitive processes that operate at the edge nodes of a network of robotic platforms.
The applicability of the proposed framework is explained using an example of a real-world industrial case study.
arXiv Detail & Related papers (2020-12-15T09:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.