Fast-Convergent Dynamics for Distributed Resource Allocation Over Sparse
Time-Varying Networks
- URL: http://arxiv.org/abs/2012.08181v2
- Date: Sat, 27 Feb 2021 09:08:54 GMT
- Title: Fast-Convergent Dynamics for Distributed Resource Allocation Over Sparse
Time-Varying Networks
- Authors: Mohammadreza Doostmohammadian, Alireza Aghasi, Themistoklis
Charalambous
- Abstract summary: In this paper, distributed dynamics are deployed to solve resource allocation over time-varying multi-agent networks.
The state of each agent represents the amount of resources used/produced at that agent while the total amount of resources is fixed.
This is motivated by distributed applications such as in mobile edge-computing, economic dispatch over smart grids, and multi-agent coverage control.
- Score: 8.830479021890577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, distributed dynamics are deployed to solve resource allocation
over time-varying multi-agent networks. The state of each agent represents the
amount of resources used/produced at that agent while the total amount of
resources is fixed. The idea is to optimally allocate the resources among the
group of agents by reducing the total cost functions subject to fixed amount of
total resources. The information of each agent is restricted to its own state
and cost function and those of its immediate neighbors. This is motivated by
distributed applications such as in mobile edge-computing, economic dispatch
over smart grids, and multi-agent coverage control. The non-Lipschitz dynamics
proposed in this work shows fast convergence as compared to the linear and some
nonlinear solutions in the literature. Further, the multi-agent network
connectivity is more relaxed in this paper. To be more specific, the proposed
dynamics even reaches optimal solution over time-varying disconnected
undirected networks as far as the union of these networks over some bounded
non-overlapping time-intervals includes a spanning-tree. The proposed
convergence analysis can be applied for similar 1st-order resource allocation
nonlinear dynamics. We provide simulations to verify our results.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Fully Distributed Fog Load Balancing with Multi-Agent Reinforcement Learning [1.9643748953805935]
This paper proposes a fully distributed load-balancing solution with Multi-Agent Reinforcement Learning (MARL)
MARL agents use transfer learning for life-long self-adaptation to dynamic changes in the environment.
We analyze the impact of a realistic frequency to observe the state of the environment, unlike the unrealistic common assumption in the literature of having observations readily available in real-time for every required action.
arXiv Detail & Related papers (2024-05-15T23:44:06Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
We study distributed (strongly convex) optimization problems over a network of agents, with no centralized nodes.
An $varepsilon$-solution is achieved in $tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$ number of communications steps.
This rate matches (up to poly-log factors) for the first time lower complexity communication bounds of distributed gossip-algorithms applied to the class of problems of interest.
arXiv Detail & Related papers (2021-10-24T04:03:00Z) - Resource allocation in dynamic multiagent systems [0.0]
The MG-RAO algorithm is developed to solve resource allocation problems in multi-agent systems.
It shows a 23 - 28% improvement over fixed resource allocation in the simulated environments.
Results also show that, in a volatile system, using the MG-RAO algorithm configured so that child agents model resource allocation for all agents as a whole has 46.5% of the performance of when it is set to model multiple groups of agents.
arXiv Detail & Related papers (2021-02-16T17:56:23Z) - Dynamic RAN Slicing for Service-Oriented Vehicular Networks via
Constrained Learning [40.5603189901241]
We investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements.
A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource.
We show that the RAWS effectively reduces the system cost while satisfying requirements with a high probability, as compared with benchmarks.
arXiv Detail & Related papers (2020-12-03T15:08:38Z) - Coordinated Online Learning for Multi-Agent Systems with Coupled
Constraints and Perturbed Utility Observations [91.02019381927236]
We introduce a novel method to steer the agents toward a stable population state, fulfilling the given resource constraints.
The proposed method is a decentralized resource pricing method based on the resource loads resulting from the augmentation of the game's Lagrangian.
arXiv Detail & Related papers (2020-10-21T10:11:17Z) - Multi-Agent Deep Reinforcement Learning enabled Computation Resource
Allocation in a Vehicular Cloud Network [30.736512922808362]
We investigate the computational resource allocation problem in a distributed Ad-Hoc vehicular network with no centralized infrastructure support.
To overcome the dilemma of lacking a real central control unit in VCN, the allocation is completed on the vehicles in a distributed manner.
arXiv Detail & Related papers (2020-08-14T17:02:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.