Multi-Agent Deep Reinforcement Learning enabled Computation Resource
Allocation in a Vehicular Cloud Network
- URL: http://arxiv.org/abs/2008.06464v2
- Date: Mon, 17 Aug 2020 14:26:11 GMT
- Title: Multi-Agent Deep Reinforcement Learning enabled Computation Resource
Allocation in a Vehicular Cloud Network
- Authors: Shilin Xu, Caili Guo, Rose Qingyang Hu and Yi Qian
- Abstract summary: We investigate the computational resource allocation problem in a distributed Ad-Hoc vehicular network with no centralized infrastructure support.
To overcome the dilemma of lacking a real central control unit in VCN, the allocation is completed on the vehicles in a distributed manner.
- Score: 30.736512922808362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the computational resource allocation problem
in a distributed Ad-Hoc vehicular network with no centralized infrastructure
support. To support the ever increasing computational needs in such a vehicular
network, the distributed virtual cloud network (VCN) is formed, based on which
a computational resource sharing scheme through offloading among nearby
vehicles is proposed. In view of the time-varying computational resource in
VCN, the statistical distribution characteristics for computational resource
are analyzed in detail. Thereby, a resource-aware combinatorial optimization
objective mechanism is proposed. To alleviate the non-stationary environment
caused by the typically multi-agent environment in VCN, we adopt a centralized
training and decentralized execution framework. In addition, for the objective
optimization problem, we model it as a Markov game and propose a DRL based
multi-agent deep deterministic reinforcement learning (MADDPG) algorithm to
solve it. Interestingly, to overcome the dilemma of lacking a real central
control unit in VCN, the allocation is actually completed on the vehicles in a
distributed manner. The simulation results are presented to demonstrate our
scheme's effectiveness.
Related papers
- AirDnD -- Asynchronous In-Range Dynamic and Distributed Network Orchestration Framework [1.8590097948961688]
This research aims to improve and utilize the usage of computing resources in distributed edge devices by forming a dynamic mesh network.
The proposed solution consists of three models that transform growing amounts of geographically distributed edge devices into a living organism.
arXiv Detail & Related papers (2024-07-15T07:43:56Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
We formulate offloading of computational tasks from a dynamic group of mobile agents (e.g., cars) as decentralized decision making among autonomous agents.
We design an interaction mechanism that incentivizes such agents to align private and system goals by balancing between competition and cooperation.
We propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information.
arXiv Detail & Related papers (2022-07-29T10:29:06Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Multi-agent Reinforcement Learning for Resource Allocation in IoT
networks with Edge Computing [16.129649374251088]
It's challenging for end users to offload computation due to their massive requirements on spectrum and resources.
In this paper, we investigate offloading mechanism with resource allocation in IoT edge computing networks by formulating it as a game.
arXiv Detail & Related papers (2020-04-05T20:59:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.