Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation
- URL: http://arxiv.org/abs/2012.08226v2
- Date: Thu, 17 Dec 2020 07:07:25 GMT
- Title: Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation
- Authors: Minsu Kim, Sunghun Joung, Seungryong Kim, JungIn Park, Ig-Jae Kim,
Kwanghoon Sohn
- Abstract summary: Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
- Score: 74.3349233035632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing techniques to adapt semantic segmentation networks across the source
and target domains within deep convolutional neural networks (CNNs) deal with
all the samples from the two domains in a global or category-aware manner. They
do not consider an inter-class variation within the target domain itself or
estimated category, providing the limitation to encode the domains having a
multi-modal data distribution. To overcome this limitation, we introduce a
learnable clustering module, and a novel domain adaptation framework called
cross-domain grouping and alignment. To cluster the samples across domains with
an aim to maximize the domain alignment without forgetting precise segmentation
ability on the source domain, we present two loss functions, in particular, for
encouraging semantic consistency and orthogonality among the clusters. We also
present a loss so as to solve a class imbalance problem, which is the other
limitation of the previous methods. Our experiments show that our method
consistently boosts the adaptation performance in semantic segmentation,
outperforming the state-of-the-arts on various domain adaptation settings.
Related papers
- Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - Domain Generalization via Selective Consistency Regularization for Time
Series Classification [16.338176636365752]
Domain generalization methods aim to learn models robust to domain shift with data from a limited number of source domains.
We propose a novel representation learning methodology that selectively enforces prediction consistency between source domains.
arXiv Detail & Related papers (2022-06-16T01:57:35Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
We propose a new UDA semantic segmentation approach based on domain assumption closeness to alleviate the above problems.
Specifically, a prototype clustering strategy is applied to cluster pixels with the same semantic, which will better maintain associations among target domain pixels.
Experiments conducted on GTA5 and SYNTHIA proved the effectiveness of our method.
arXiv Detail & Related papers (2021-05-07T10:24:18Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them.
We propose a novel approach called Cross-domain Adaptive Clustering to address this problem.
arXiv Detail & Related papers (2021-04-19T16:07:32Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z) - Class Distribution Alignment for Adversarial Domain Adaptation [32.95056492475652]
Conditional ADversarial Image Translation (CADIT) is proposed to explicitly align the class distributions given samples between the two domains.
It integrates a discriminative structure-preserving loss and a joint adversarial generation loss.
Our approach achieves superior classification in the target domain when compared to the state-of-the-art methods.
arXiv Detail & Related papers (2020-04-20T15:58:11Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue.
We propose to improve the semantic-level alignment with different strategies for stuff regions and for things.
In addition to our proposed method, we show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains.
arXiv Detail & Related papers (2020-03-18T04:43:25Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.