Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation
- URL: http://arxiv.org/abs/2003.08040v3
- Date: Tue, 9 Jun 2020 17:56:27 GMT
- Title: Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation
- Authors: Zhonghao Wang, Mo Yu, Yunchao Wei, Rogerio Feris, Jinjun Xiong,
Wen-mei Hwu, Thomas S. Huang, Humphrey Shi
- Abstract summary: State-of-the-art approaches prove that performing semantic-level alignment is helpful in tackling the domain shift issue.
We propose to improve the semantic-level alignment with different strategies for stuff regions and for things.
In addition to our proposed method, we show that our method can help ease this issue by minimizing the most similar stuff and instance features between the source and the target domains.
- Score: 105.96860932833759
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of unsupervised domain adaptation for semantic
segmentation by easing the domain shift between the source domain (synthetic
data) and the target domain (real data) in this work. State-of-the-art
approaches prove that performing semantic-level alignment is helpful in
tackling the domain shift issue. Based on the observation that stuff categories
usually share similar appearances across images of different domains while
things (i.e. object instances) have much larger differences, we propose to
improve the semantic-level alignment with different strategies for stuff
regions and for things: 1) for the stuff categories, we generate feature
representation for each class and conduct the alignment operation from the
target domain to the source domain; 2) for the thing categories, we generate
feature representation for each individual instance and encourage the instance
in the target domain to align with the most similar one in the source domain.
In this way, the individual differences within thing categories will also be
considered to alleviate over-alignment. In addition to our proposed method, we
further reveal the reason why the current adversarial loss is often unstable in
minimizing the distribution discrepancy and show that our method can help ease
this issue by minimizing the most similar stuff and instance features between
the source and the target domains. We conduct extensive experiments in two
unsupervised domain adaptation tasks, i.e. GTA5 to Cityscapes and SYNTHIA to
Cityscapes, and achieve the new state-of-the-art segmentation accuracy.
Related papers
- WUDA: Unsupervised Domain Adaptation Based on Weak Source Domain Labels [5.718326013810649]
Unsupervised domain adaptation (UDA) for semantic segmentation addresses the cross-domain problem with fine source domain labels.
This paper defines a new task: unsupervised domain adaptation based on weak source domain labels.
arXiv Detail & Related papers (2022-10-05T08:28:57Z) - Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation [31.150256154504696]
Unsupervised Domain Adaptation (UDA) has propelled the deployment of deep learning from limited experimental datasets into real-world unconstrained domains.
Most UDA approaches align features within a common embedding space and apply a shared classifier for target prediction.
We propose to simultaneously conduct feature alignment in two individual spaces focusing on different domains, and create for each space a domain-oriented classifier.
arXiv Detail & Related papers (2022-08-02T01:38:37Z) - Birds of A Feather Flock Together: Category-Divergence Guidance for
Domain Adaptive Segmentation [35.63920597305474]
Unsupervised domain adaptation (UDA) aims to enhance the generalization capability of a certain model from a source domain to a target domain.
In this work, we propose an Inter-class Separation and Intra-class Aggregation (ISIA) mechanism.
By measuring the align complexity of each category, we design an Adaptive-weighted Instance Matching (AIM) strategy to further optimize the instance-level adaptation.
arXiv Detail & Related papers (2022-04-05T11:17:19Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
Unsupervised domain adaptation aims to train a model from the labeled source domain to make predictions on the unlabeled target domain.
Existing methods tend to align the two domains directly at the domain-level, or perform class-level domain alignment based on deep feature.
In this paper, we develop this work on the method of class-level alignment.
arXiv Detail & Related papers (2021-09-14T09:23:27Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
We propose a new UDA semantic segmentation approach based on domain assumption closeness to alleviate the above problems.
Specifically, a prototype clustering strategy is applied to cluster pixels with the same semantic, which will better maintain associations among target domain pixels.
Experiments conducted on GTA5 and SYNTHIA proved the effectiveness of our method.
arXiv Detail & Related papers (2021-05-07T10:24:18Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.