CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning
- URL: http://arxiv.org/abs/2012.08241v1
- Date: Tue, 15 Dec 2020 12:20:28 GMT
- Title: CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning
- Authors: Yang He and Maximilian Zenk and Mario Fritz
- Abstract summary: Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
- Score: 62.65937719264881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning facilitates learning across clients without transferring
local data on these clients to a central server. Despite the success of the
federated learning method, it remains to improve further w.r.t communicating
the most critical information to update a model under limited communication
conditions, which can benefit this learning scheme into a wide range of
application scenarios. In this work, we propose a nonlinear quantization for
compressed stochastic gradient descent, which can be easily utilized in
federated learning. Based on the proposed quantization, our system
significantly reduces the communication cost by up to three orders of
magnitude, while maintaining convergence and accuracy of the training process
to a large extent. Extensive experiments are conducted on image classification
and brain tumor semantic segmentation using the MNIST, CIFAR-10 and BraTS
datasets where we show state-of-the-art effectiveness and impressive
communication efficiency.
Related papers
- Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation [10.541541376305245]
Federated Learning (FL) is a promising technique for the collaborative training of deep neural networks across multiple devices.
FL is hindered by excessive communication costs due to repeated server-client communication during training.
We propose FedCompress, a novel approach that combines dynamic weight clustering and server-side knowledge distillation.
arXiv Detail & Related papers (2024-01-25T14:49:15Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Federated Pruning: Improving Neural Network Efficiency with Federated
Learning [24.36174705715827]
We propose Federated Pruning to train a reduced model under the federated setting.
We explore different pruning schemes and provide empirical evidence of the effectiveness of our methods.
arXiv Detail & Related papers (2022-09-14T00:48:37Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - Adaptive Quantization of Model Updates for Communication-Efficient
Federated Learning [75.45968495410047]
Communication of model updates between client nodes and the central aggregating server is a major bottleneck in federated learning.
Gradient quantization is an effective way of reducing the number of bits required to communicate each model update.
We propose an adaptive quantization strategy called AdaFL that aims to achieve communication efficiency as well as a low error floor.
arXiv Detail & Related papers (2021-02-08T19:14:21Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
Federated learning provides a potential solution to privacy-preserving and secure machine learning.
We propose a ternary federated averaging protocol (T-FedAvg) to reduce the upstream and downstream communication of federated learning systems.
Our results show that the proposed T-FedAvg is effective in reducing communication costs and can even achieve slightly better performance on non-IID data.
arXiv Detail & Related papers (2020-03-07T11:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.