Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation
- URL: http://arxiv.org/abs/2401.14211v3
- Date: Sun, 25 Feb 2024 20:03:17 GMT
- Title: Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation
- Authors: Vasileios Tsouvalas, Aaqib Saeed, Tanir Ozcelebi and Nirvana Meratnia
- Abstract summary: Federated Learning (FL) is a promising technique for the collaborative training of deep neural networks across multiple devices.
FL is hindered by excessive communication costs due to repeated server-client communication during training.
We propose FedCompress, a novel approach that combines dynamic weight clustering and server-side knowledge distillation.
- Score: 10.541541376305245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a promising technique for the collaborative
training of deep neural networks across multiple devices while preserving data
privacy. Despite its potential benefits, FL is hindered by excessive
communication costs due to repeated server-client communication during
training. To address this challenge, model compression techniques, such as
sparsification and weight clustering are applied, which often require modifying
the underlying model aggregation schemes or involve cumbersome hyperparameter
tuning, with the latter not only adjusts the model's compression rate but also
limits model's potential for continuous improvement over growing data. In this
paper, we propose FedCompress, a novel approach that combines dynamic weight
clustering and server-side knowledge distillation to reduce communication costs
while learning highly generalizable models. Through a comprehensive evaluation
on diverse public datasets, we demonstrate the efficacy of our approach
compared to baselines in terms of communication costs and inference speed.
Related papers
- Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - HiFlash: Communication-Efficient Hierarchical Federated Learning with
Adaptive Staleness Control and Heterogeneity-aware Client-Edge Association [38.99309610943313]
Federated learning (FL) is a promising paradigm that enables collaboratively learning a shared model across massive clients.
For many existing FL systems, clients need to frequently exchange model parameters of large data size with the remote cloud server directly via wide-area networks (WAN)
We resort to the hierarchical federated learning paradigm of HiFL, which reaps the benefits of mobile edge computing.
arXiv Detail & Related papers (2023-01-16T14:39:04Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - Communication-Efficient Federated Learning with Dual-Side Low-Rank
Compression [8.353152693578151]
Federated learning (FL) is a promising and powerful approach for training deep learning models without sharing the raw data of clients.
We propose a new training method, referred to as federated learning with dual-side low-rank compression (FedDLR)
We show that FedDLR outperforms the state-of-the-art solutions in terms of both the communication and efficiency.
arXiv Detail & Related papers (2021-04-26T09:13:31Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z) - Communication-Efficient Federated Learning with Compensated
Overlap-FedAvg [22.636184975591004]
Federated learning is proposed to perform model training by multiple clients' combined data without the dataset sharing within the cluster.
We propose Overlap-FedAvg, a framework that parallels the model training phase with model uploading & downloading phase.
Overlap-FedAvg is further developed with a hierarchical computing strategy, a data compensation mechanism and a nesterov accelerated gradients(NAG) algorithm.
arXiv Detail & Related papers (2020-12-12T02:50:09Z) - Ternary Compression for Communication-Efficient Federated Learning [17.97683428517896]
Federated learning provides a potential solution to privacy-preserving and secure machine learning.
We propose a ternary federated averaging protocol (T-FedAvg) to reduce the upstream and downstream communication of federated learning systems.
Our results show that the proposed T-FedAvg is effective in reducing communication costs and can even achieve slightly better performance on non-IID data.
arXiv Detail & Related papers (2020-03-07T11:55:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.