論文の概要: Online Learning Demands in Max-min Fairness
- arxiv url: http://arxiv.org/abs/2012.08648v1
- Date: Tue, 15 Dec 2020 22:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 05:40:25.520374
- Title: Online Learning Demands in Max-min Fairness
- Title(参考訳): Max-min Fairnessにおけるオンライン学習需要
- Authors: Kirthevasan Kandasamy, Gur-Eyal Sela, Joseph E Gonzalez, Michael I
Jordan, Ion Stoica
- Abstract要約: 本稿では,複数のユーザ間の希少リソースの割り当て機構について,効率的で公平で戦略に準拠した方法で記述する。
このメカニズムは複数のラウンドで繰り返され、各ラウンドでユーザの要求が変更される可能性がある。
各ラウンドの最後には、ユーザは受け取ったアロケーションに関するフィードバックを提供し、そのメカニズムが時間の経過とともにユーザの好みを学習することを可能にする。
- 参考スコア(独自算出の注目度): 91.37280766977923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe mechanisms for the allocation of a scarce resource among multiple
users in a way that is efficient, fair, and strategy-proof, but when users do
not know their resource requirements. The mechanism is repeated for multiple
rounds and a user's requirements can change on each round. At the end of each
round, users provide feedback about the allocation they received, enabling the
mechanism to learn user preferences over time. Such situations are common in
the shared usage of a compute cluster among many users in an organisation,
where all teams may not precisely know the amount of resources needed to
execute their jobs. By understating their requirements, users will receive less
than they need and consequently not achieve their goals. By overstating them,
they may siphon away precious resources that could be useful to others in the
organisation. We formalise this task of online learning in fair division via
notions of efficiency, fairness, and strategy-proofness applicable to this
setting, and study this problem under three types of feedback: when the users'
observations are deterministic, when they are stochastic and follow a
parametric model, and when they are stochastic and nonparametric. We derive
mechanisms inspired by the classical max-min fairness procedure that achieve
these requisites, and quantify the extent to which they are achieved via
asymptotic rates. We corroborate these insights with an experimental evaluation
on synthetic problems and a web-serving task.
- Abstract(参考訳): 本稿では,複数のユーザ間のリソース割り当ての仕組みを,リソース要件を知らない場合であっても,効率的で公平で戦略に準拠した方法で記述する。
このメカニズムは複数のラウンドで繰り返され、各ラウンドでユーザの要求が変更される。
各ラウンドの最後には、ユーザは受け取ったアロケーションに関するフィードバックを提供し、そのメカニズムが時間の経過とともにユーザの好みを学習することを可能にする。
このような状況は、組織内の多くのユーザの間で計算クラスタの共有使用において一般的であり、すべてのチームが自分のジョブを実行するために必要なリソースの量を正確に把握できない場合がある。
要件を過小評価することで、ユーザは必要よりも少なく、その結果、目標を達成できなくなります。
過度に集計することで、組織内の他の人々に役立つ貴重なリソースを取り除くことができる。
我々は、オンライン学習のこの課題を、この設定に適用可能な効率性、公平性、戦略防御性の概念を通して公正な区分で定式化し、この問題を3種類のフィードバックで研究する: ユーザの観察が決定論的であるとき、確率的かつパラメトリックなモデルに従うとき、そして、それらが確率的かつ非パラメトリックであるとき。
我々はこれらの要求を満たす古典的な最大値公正手順にインスパイアされたメカニズムを導出し、それらが漸近速度によって達成される範囲を定量化する。
我々はこれらの知見を合成問題とweb保存タスクに関する実験的評価で裏付ける。
関連論文リスト
- Active Learning for Fair and Stable Online Allocations [6.23798328186465]
我々は、オンラインリソース割り当てプロセスの各エポックにおいて、エージェントの特定のサブセットからのフィードバックを検討する。
提案アルゴリズムは,様々な測度に対して,時系列のサブ線形な後悔境界を提供する。
我々は,効率的な意思決定には広範なフィードバックは必要とせず,様々な問題クラスに対して効率的な結果をもたらすことを示した。
論文 参考訳(メタデータ) (2024-06-20T23:23:23Z) - Resilient Constrained Learning [94.27081585149836]
本稿では,学習課題を同時に解決しながら,要求に適応する制約付き学習手法を提案する。
我々はこの手法を、その操作を変更することで破壊に適応する生態システムを記述する用語に因んで、レジリエントな制約付き学習と呼ぶ。
論文 参考訳(メタデータ) (2023-06-04T18:14:18Z) - Classification Performance Metric Elicitation and its Applications [5.5637552942511155]
その実践的関心にもかかわらず、機械学習アプリケーションのためのメトリクスの選択方法に関する正式なガイダンスは限られている。
この論文は、暗黙のユーザの嗜好を最も反映したパフォーマンスメトリックを選択するための原則的なフレームワークとして、メトリクスの誘惑を概説している。
論文 参考訳(メタデータ) (2022-08-19T03:57:17Z) - Emergent specialization from participation dynamics and multi-learner retraining [26.913065669463247]
我々は、ユーザがサービスへの参加を割り当てるダイナミクスのクラスを分析し、経験する個人のリスクを減らす。
複数の学習者とミオピックを繰り返すと、より良い結果が得られます。
論文 参考訳(メタデータ) (2022-06-06T15:12:56Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
本研究では,個別のエージェントが異なる次元のストリーミング特徴を観察しながら分類問題の解決を目指す分散アーキテクチャを提案する。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
私たちはそれを示します。
戦略により、エージェントはこの高度に異質な環境下で一貫して学習することができる。
論文 参考訳(メタデータ) (2021-12-17T12:47:18Z) - Online Learning of Competitive Equilibria in Exchange Economies [94.24357018178867]
経済学では、複数の有理エージェント間の資源不足の共有は古典的な問題である。
エージェントの好みを学習するためのオンライン学習機構を提案する。
数値シミュレーションにより,本機構の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-11T21:32:17Z) - Conditional Meta-Learning of Linear Representations [57.90025697492041]
表現学習のための標準メタラーニングは、複数のタスク間で共有される共通の表現を見つけることを目的とする。
本研究では,タスクの側情報を手作業に適した表現にマッピングし,条件付け関数を推定することで,この問題を克服する。
この利点を実用的に活用できるメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-30T12:02:14Z) - Regularized Online Allocation Problems: Fairness and Beyond [7.433931244705934]
本稿では, 総資源消費に作用する非線形正規化器を含む変種である, 語彙化オンライン割当問題を紹介する。
この問題では、要求は時間とともに繰り返し届き、各要求に対して、意思決定者は報酬を生成しリソースを消費するアクションを取る必要があります。
目的は、資源制約を受ける加算可分な報酬と非分離可正則化器の値とを同時に最大化することである。
論文 参考訳(メタデータ) (2020-07-01T14:24:58Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
我々は,アクティブラーニングシステムとユーザを協調的に(効率的に学習)するための,新しいアクティブラーニング手法を提案する。
本手法は,特定のユーザに対して,エクササイズの適切性を予測するために,学習を迅速かつ迅速に行う必要があるため,特に,この手法のメリットを生かした教育アプリケーションで研究する。
複数の学習戦略とユーザタイプを実際のユーザからのデータで評価し,代替手法がエンドユーザに適さない多くのエクササイズをもたらす場合,共同アプローチが両方の目標を満足できることを確認した。
論文 参考訳(メタデータ) (2020-05-09T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。