Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural
Networks
- URL: http://arxiv.org/abs/2012.08740v1
- Date: Wed, 16 Dec 2020 04:31:19 GMT
- Title: Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural
Networks
- Authors: Yuhang Yao, Carlee Joe-Wong
- Abstract summary: We study the problem of clustering nodes in a dynamic graph, where the connections between nodes and nodes' cluster memberships may change over time.
We first propose a simple decay-based clustering algorithm that clusters nodes based on weighted connections between them, where the weight decreases at a fixed rate over time.
We characterize the optimal decay rate for each cluster and propose a clustering method that achieves almost exact recovery of the true clusters.
- Score: 24.017988997693262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of clustering nodes in a dynamic graph, where the
connections between nodes and nodes' cluster memberships may change over time,
e.g., due to community migration. We first propose a dynamic stochastic block
model that captures these changes, and a simple decay-based clustering
algorithm that clusters nodes based on weighted connections between them, where
the weight decreases at a fixed rate over time. This decay rate can then be
interpreted as signifying the importance of including historical connection
information in the clustering. However, the optimal decay rate may differ for
clusters with different rates of turnover. We characterize the optimal decay
rate for each cluster and propose a clustering method that achieves almost
exact recovery of the true clusters. We then demonstrate the efficacy of our
clustering algorithm with optimized decay rates on simulated graph data.
Recurrent neural networks (RNNs), a popular algorithm for sequence learning,
use a similar decay-based method, and we use this insight to propose two new
RNN-GCN (graph convolutional network) architectures for semi-supervised graph
clustering. We finally demonstrate that the proposed architectures perform well
on real data compared to state-of-the-art graph clustering algorithms.
Related papers
- Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Dink-Net: Neural Clustering on Large Graphs [59.10189693120368]
A deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink.
By discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner.
The clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss.
Compared to the runner-up, Dink-Net 9.62% achieves NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges.
arXiv Detail & Related papers (2023-05-28T15:33:24Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - Total Variation Graph Neural Networks [5.571369922847262]
Recently proposed Graph Neural Networks (GNNs) are trained with an unsupervised minimum cut objective.
We propose a GNN model that computes cluster assignments by optimizing a tighter relaxation of the minimum cut.
arXiv Detail & Related papers (2022-11-11T14:13:14Z) - Simplifying Clustering with Graph Neural Networks [5.571369922847262]
This paper shows that a graph neural network, equipped with suitable message passing layers, can generate good cluster assignments by optimizing only a balancing term.
Results on attributed graph datasets show the effectiveness of the proposed approach in terms of clustering performance and time.
arXiv Detail & Related papers (2022-07-18T17:36:54Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities.
Our hierarchical GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level.
arXiv Detail & Related papers (2021-07-03T01:28:42Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.