Simplifying Clustering with Graph Neural Networks
- URL: http://arxiv.org/abs/2207.08779v1
- Date: Mon, 18 Jul 2022 17:36:54 GMT
- Title: Simplifying Clustering with Graph Neural Networks
- Authors: Filippo Maria Bianchi
- Abstract summary: This paper shows that a graph neural network, equipped with suitable message passing layers, can generate good cluster assignments by optimizing only a balancing term.
Results on attributed graph datasets show the effectiveness of the proposed approach in terms of clustering performance and time.
- Score: 5.571369922847262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective functions used in spectral clustering are usually composed of
two terms: i) a term that minimizes the local quadratic variation of the
cluster assignments on the graph and; ii) a term that balances the clustering
partition and helps avoiding degenerate solutions. This paper shows that a
graph neural network, equipped with suitable message passing layers, can
generate good cluster assignments by optimizing only a balancing term. Results
on attributed graph datasets show the effectiveness of the proposed approach in
terms of clustering performance and computation time.
Related papers
- Differentiable Cluster Graph Neural Network [16.26923480430114]
We present a framework that incorporates a clustering inductive bias into the message passing mechanism, using additional cluster-nodes.
Our approach can effectively capture both local and global information, demonstrated by extensive experiments on both heterophilous and homophilous datasets.
arXiv Detail & Related papers (2024-05-25T11:23:39Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
We show how to enforce a one-step normalized cut for bipartite graphs, especially with linear-time complexity.
In this paper, we first characterize a novel one-step bipartite graph cut criterion with normalized constraints, and theoretically prove its equivalence to a trace problem.
We extend this cut criterion to a scalable subspace clustering approach, where adaptive anchor learning, bipartite graph learning, and one-step normalized bipartite graph partitioning are simultaneously modeled.
arXiv Detail & Related papers (2023-05-12T11:27:20Z) - DeepCut: Unsupervised Segmentation using Graph Neural Networks
Clustering [6.447863458841379]
This study introduces a lightweight Graph Neural Network (GNN) to replace classical clustering methods.
Unlike existing methods, our GNN takes both the pair-wise affinities between local image features and the raw features as input.
We demonstrate how classical clustering objectives can be formulated as self-supervised loss functions for training an image segmentation GNN.
arXiv Detail & Related papers (2022-12-12T12:31:46Z) - Total Variation Graph Neural Networks [5.571369922847262]
Recently proposed Graph Neural Networks (GNNs) are trained with an unsupervised minimum cut objective.
We propose a GNN model that computes cluster assignments by optimizing a tighter relaxation of the minimum cut.
arXiv Detail & Related papers (2022-11-11T14:13:14Z) - Higher-order Clustering and Pooling for Graph Neural Networks [77.47617360812023]
Graph Neural Networks achieve state-of-the-art performance on a plethora of graph classification tasks.
HoscPool is a clustering-based graph pooling operator that captures higher-order information hierarchically.
We evaluate HoscPool on graph classification tasks and its clustering component on graphs with ground-truth community structure.
arXiv Detail & Related papers (2022-09-02T09:17:10Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural
Networks [24.017988997693262]
We study the problem of clustering nodes in a dynamic graph, where the connections between nodes and nodes' cluster memberships may change over time.
We first propose a simple decay-based clustering algorithm that clusters nodes based on weighted connections between them, where the weight decreases at a fixed rate over time.
We characterize the optimal decay rate for each cluster and propose a clustering method that achieves almost exact recovery of the true clusters.
arXiv Detail & Related papers (2020-12-16T04:31:19Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.