Clinical Temporal Relation Extraction with Probabilistic Soft Logic
Regularization and Global Inference
- URL: http://arxiv.org/abs/2012.08790v1
- Date: Wed, 16 Dec 2020 08:23:03 GMT
- Title: Clinical Temporal Relation Extraction with Probabilistic Soft Logic
Regularization and Global Inference
- Authors: Yichao Zhou, Yu Yan, Rujun Han, J. Harry Caufield, Kai-Wei Chang,
Yizhou Sun, Peipei Ping, and Wei Wang
- Abstract summary: Existing methods either require expensive feature engineering or are incapable of modeling the global dependencies among the events.
In this paper, we propose a novel method, Clinical Temporal ReLation Exaction with Probabilistic Soft Logic Regularization and Global Inference.
- Score: 50.029659413650194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a steady need in the medical community to precisely extract
the temporal relations between clinical events. In particular, temporal
information can facilitate a variety of downstream applications such as case
report retrieval and medical question answering. Existing methods either
require expensive feature engineering or are incapable of modeling the global
relational dependencies among the events. In this paper, we propose a novel
method, Clinical Temporal ReLation Exaction with Probabilistic Soft Logic
Regularization and Global Inference (CTRL-PG) to tackle the problem at the
document level. Extensive experiments on two benchmark datasets, I2B2-2012 and
TB-Dense, demonstrate that CTRL-PG significantly outperforms baseline methods
for temporal relation extraction.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Identifying TBI Physiological States by Clustering Multivariate Clinical
Time-Series Data [8.487912181381404]
SLAC-Time is an innovative self-supervision-based approach that maintains data integrity by avoiding imputation or aggregation.
By using SLAC-Time to cluster data in a large research dataset, we identified three distinct TBI physiological states.
arXiv Detail & Related papers (2023-03-23T04:16:00Z) - Bayesian Complementary Kernelized Learning for Multidimensional
Spatiotemporal Data [11.763229353978321]
We propose a new statistical framework -- Complementary Complementary Kernelized Learning (BCKL)
BCKL offers superior performance in providing accurate posterior mean and high-quality uncertainty estimates.
arXiv Detail & Related papers (2022-08-21T22:38:54Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
In some scenarios such as healthcare, usually only few records are available for each patient, impeding the application of currentReinforcement learning algorithms.
We propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics.
We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function.
arXiv Detail & Related papers (2020-12-16T17:21:13Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.