論文の概要: A Hybrid Graph Neural Network Approach for Detecting PHP Vulnerabilities
- arxiv url: http://arxiv.org/abs/2012.08835v1
- Date: Wed, 16 Dec 2020 10:17:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 02:47:58.747689
- Title: A Hybrid Graph Neural Network Approach for Detecting PHP Vulnerabilities
- Title(参考訳): PHP脆弱性検出のためのハイブリッドグラフニューラルネットワークアプローチ
- Authors: Rishi Rabheru, Hazim Hanif, Sergio Maffeis
- Abstract要約: DeepTectiveはGated Recurrent UnitsとGraph Convolutional Networksを組み合わせて脆弱性を検出するハイブリッド技術である。
我々は、DeepTectiveを評価し、確立された合成データセットとGitHubから収集された新しい実世界のデータセットのアートの状態と比較する。
実験の結果、DeepTectiveは合成データセットのほぼ完全な分類を達成し、現実的なデータセットのF1スコアは88.12%であった。
- 参考スコア(独自算出の注目度): 0.38673630752805443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents DeepTective, a deep learning approach to detect
vulnerabilities in PHP source code. Our approach implements a novel hybrid
technique that combines Gated Recurrent Units and Graph Convolutional Networks
to detect SQLi, XSS and OSCI vulnerabilities leveraging both syntactic and
semantic information. We evaluate DeepTective and compare it to the state of
the art on an established synthetic dataset and on a novel real-world dataset
collected from GitHub. Experimental results show that DeepTective achieves near
perfect classification on the synthetic dataset, and an F1 score of 88.12% on
the realistic dataset, outperforming related approaches. We validate
DeepTective in the wild by discovering 4 novel vulnerabilities in established
WordPress plugins.
- Abstract(参考訳): 本稿では,phpソースコードの脆弱性を検出するディープラーニングアプローチであるdeeptectiveを提案する。
提案手法は,sqli,xss,osciの脆弱性を構文情報と意味情報の両方を利用して検出するために,ゲートリカレント単位とグラフ畳み込みネットワークを組み合わせた新しいハイブリッド手法を実装している。
我々は、DeepTectiveを評価し、確立された合成データセットとGitHubから収集された新しい実世界のデータセットのアートの状態と比較する。
実験の結果、DeepTectiveは合成データセットのほぼ完全な分類を達成し、F1スコアは現実的なデータセットの88.12%であり、関連するアプローチよりも優れていた。
確立したWordPressプラグインに4つの新たな脆弱性を発見し,DeepTectiveを実証した。
関連論文リスト
- Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
ソースコードの脆弱性検出は、潜在的な攻撃からソフトウェアシステムを保護するための固有の脆弱性を特定することを目的としている。
多くの先行研究は、様々な脆弱性の特徴を見落とし、問題をバイナリ(0-1)分類タスクに単純化した。
FGVulDetは、さまざまな脆弱性タイプの特徴を識別するために複数の分類器を使用し、その出力を組み合わせて特定の脆弱性タイプを特定する。
FGVulDetはGitHubの大規模なデータセットでトレーニングされており、5種類の脆弱性を含んでいる。
論文 参考訳(メタデータ) (2024-04-15T09:10:52Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - An Unbiased Transformer Source Code Learning with Semantic Vulnerability
Graph [3.3598755777055374]
現在の脆弱性スクリーニング技術は、新しい脆弱性を特定したり、開発者がコード脆弱性と分類を提供するのに効果がない。
これらの問題に対処するために,変換器 "RoBERTa" とグラフ畳み込みニューラルネットワーク (GCN) を組み合わせたマルチタスク・アンバイアス脆弱性分類器を提案する。
本稿では、逐次フロー、制御フロー、データフローからエッジを統合することで生成されたソースコードからのセマンティック脆弱性グラフ(SVG)表現と、Poacher Flow(PF)と呼ばれる新しいフローを利用したトレーニングプロセスを提案する。
論文 参考訳(メタデータ) (2023-04-17T20:54:14Z) - Deep Neural Networks based Meta-Learning for Network Intrusion Detection [0.24466725954625884]
産業の異なるコンポーネントのデジタル化と先住民ネットワーク間の相互接続性は、ネットワーク攻撃のリスクを高めている。
コンピュータネットワークの予測モデルを構築するために使用されるデータには、スキュークラス分布と攻撃型の限定表現がある。
Information Fusion and Stacking Ensemble (INFUSE) という,ネットワーク侵入検出のための新しいディープニューラルネットワークベースのメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-18T18:00:05Z) - VulBERTa: Simplified Source Code Pre-Training for Vulnerability
Detection [1.256413718364189]
VulBERTaは、ソースコードのセキュリティ脆弱性を検出するためのディープラーニングアプローチである。
当社のアプローチでは,オープンソースのC/C++プロジェクトの実世界のコードに対して,独自のトークン化パイプラインを備えたRoBERTaモデルを事前トレーニングする。
複数のデータセットにまたがるバイナリおよびマルチクラス脆弱性検出タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2022-05-25T00:56:43Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。