論文の概要: FedADC: Accelerated Federated Learning with Drift Control
- arxiv url: http://arxiv.org/abs/2012.09102v1
- Date: Wed, 16 Dec 2020 17:49:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 02:41:26.006812
- Title: FedADC: Accelerated Federated Learning with Drift Control
- Title(参考訳): FedADC: ドリフトコントロールによるフェデレーション学習の促進
- Authors: Emre Ozfatura and Kerem Ozfatura and Deniz Gunduz
- Abstract要約: フェデレーション学習(fl)は、プライバシーを懸念するエッジデバイス間のコラボレーション学習のためのデファクトフレームワークとなっている。
FLの大規模実装は、SGD用に設計された加速技術の分散環境への導入や、局所データセットの非均一分布によるドリフト問題の緩和など、新たな課題をもたらす。
flフレームワークに大きな変更を加えることなく、あるいは追加の計算と通信負荷を導入することなく、単一の戦略を使って両方の問題に対処することが可能であることを示す。
ドリフト制御を用いた加速FLアルゴリズムであるFedADCを提案する。
- 参考スコア(独自算出の注目度): 6.746400031322727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has become de facto framework for collaborative
learning among edge devices with privacy concern. The core of the FL strategy
is the use of stochastic gradient descent (SGD) in a distributed manner. Large
scale implementation of FL brings new challenges, such as the incorporation of
acceleration techniques designed for SGD into the distributed setting, and
mitigation of the drift problem due to non-homogeneous distribution of local
datasets. These two problems have been separately studied in the literature;
whereas, in this paper, we show that it is possible to address both problems
using a single strategy without any major alteration to the FL framework, or
introducing additional computation and communication load. To achieve this
goal, we propose FedADC, which is an accelerated FL algorithm with drift
control. We empirically illustrate the advantages of FedADC.
- Abstract(参考訳): フェデレートラーニング(FL)は、プライバシーに関するエッジデバイス間の協調学習のためのデファクトフレームワークとなっている。
fl戦略の核心は、確率勾配降下(sgd)を分散的に使用することである。
FLの大規模実装は、SGD用に設計された加速技術の分散環境への導入や、局所データセットの非均一分布によるドリフト問題の緩和など、新たな課題をもたらす。
この2つの問題は文献で個別に研究されているが,本稿では,flフレームワークに大きな変更を加えることなく,単一の戦略を用いて,あるいは追加の計算処理と通信負荷を導入することで,どちらの問題にも対処できることを示す。
この目的を達成するために,ドリフト制御付き高速化FLアルゴリズムであるFedADCを提案する。
FedADCの利点を実証的に説明します。
関連論文リスト
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
通信オーバーヘッドは、ディープニューラルネットワークの分散トレーニングにおいて、大きなボトルネックのひとつになっています。
本稿では,SIGNSGDの非収束問題に対処する等級化方式を提案する。
提案手法は,Fashion-MNIST, CIFAR-10, CIFAR-100データセットを用いて検証した。
論文 参考訳(メタデータ) (2023-02-19T17:42:35Z) - FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering [4.489171618387544]
Federated Learning(FL)は、エッジデバイス上でクライアントデータを保持することによって、プライバシを保護する機械学習パラダイムである。
本稿では,多様な分布シフトの同時発生による学習課題を特定する。
提案するクラスタリングの原理に従う新しいクラスタリングアルゴリズムフレームワークであるFedRCを提案する。
論文 参考訳(メタデータ) (2023-01-29T06:50:45Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Distributionally Robust Federated Averaging [19.875176871167966]
適応サンプリングを用いた堅牢な学習周期平均化のためのコミュニケーション効率の高い分散アルゴリズムを提案する。
我々は、フェデレーション学習環境における理論的結果に関する実験的証拠を裏付ける。
論文 参考訳(メタデータ) (2021-02-25T03:32:09Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
コミュニケーションのボトルネックは、大規模なディープラーニングにおいて重要な問題である。
非効率な分散問題に対する誤りフィードバックよりも優れた収束性を示す分散誤差フィードバック(DEF)アルゴリズムを提案する。
また、DEFよりも優れた境界を示すDEFの一般化を加速するDEFAを提案する。
論文 参考訳(メタデータ) (2020-04-11T03:50:59Z) - Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees [49.91477656517431]
量子化に基づく解法は、フェデレートラーニング(FL)において広く採用されている。
上記のプロパティをすべて享受する既存のメソッドはありません。
本稿では,SIGNSGDに基づく直感的かつ理論的に簡易な手法を提案し,そのギャップを埋める。
論文 参考訳(メタデータ) (2020-02-25T15:12:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。