High Dimensional Level Set Estimation with Bayesian Neural Network
- URL: http://arxiv.org/abs/2012.09973v1
- Date: Thu, 17 Dec 2020 23:21:53 GMT
- Title: High Dimensional Level Set Estimation with Bayesian Neural Network
- Authors: Huong Ha, Sunil Gupta, Santu Rana, Svetha Venkatesh
- Abstract summary: This paper proposes novel methods to solve the high dimensional Level Set Estimation problems using Bayesian Neural Networks.
For each problem, we derive the corresponding theoretic information based acquisition function to sample the data points.
Numerical experiments on both synthetic and real-world datasets show that our proposed method can achieve better results compared to existing state-of-the-art approaches.
- Score: 58.684954492439424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Level Set Estimation (LSE) is an important problem with applications in
various fields such as material design, biotechnology, machine operational
testing, etc. Existing techniques suffer from the scalability issue, that is,
these methods do not work well with high dimensional inputs. This paper
proposes novel methods to solve the high dimensional LSE problems using
Bayesian Neural Networks. In particular, we consider two types of LSE problems:
(1) \textit{explicit} LSE problem where the threshold level is a fixed
user-specified value, and, (2) \textit{implicit} LSE problem where the
threshold level is defined as a percentage of the (unknown) maximum of the
objective function. For each problem, we derive the corresponding theoretic
information based acquisition function to sample the data points so as to
maximally increase the level set accuracy. Furthermore, we also analyse the
theoretical time complexity of our proposed acquisition functions, and suggest
a practical methodology to efficiently tune the network hyper-parameters to
achieve high model accuracy. Numerical experiments on both synthetic and
real-world datasets show that our proposed method can achieve better results
compared to existing state-of-the-art approaches.
Related papers
- Trainability maximization using estimation of distribution algorithms assisted by surrogate modelling for quantum architecture search [8.226785409557598]
Quantum architecture search (QAS) involves optimizing both the quantum parametric circuit configuration but also its parameters for a variational quantum algorithm.
In this paper, we aim to achieve two improvements in QAS: (1) to reduce the number of measurements by an online surrogate model of the evaluation process that aggressively discards architectures of poor performance; (2) to avoid training the circuits when BPs are present.
We experimentally validate our proposal for the variational quantum eigensolver and showcase that our algorithm is able to find solutions that have been previously proposed in the literature for the Hamiltonians; but also to outperform the state of the
arXiv Detail & Related papers (2024-07-29T15:22:39Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Effective Bilevel Optimization via Minimax Reformulation [23.5093932552053]
We propose a reformulation of bilevel optimization as a minimax problem.
Under mild conditions, we show these two problems are equivalent.
Our method outperforms state-of-the-art bilevel methods while significantly reducing the computational cost.
arXiv Detail & Related papers (2023-05-22T15:41:33Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - An Information-Theoretic Framework for Unifying Active Learning Problems [44.758281991246825]
This paper presents an information-theoretic framework for unifying active learning problems.
We first introduce a novel active learning criterion that subsumes an existing LSE algorithm.
By exploiting the relationship between LSE and BO, we design a competitive information-theoretic acquisition function for BO.
arXiv Detail & Related papers (2020-12-19T14:22:48Z) - Active Importance Sampling for Variational Objectives Dominated by Rare
Events: Consequences for Optimization and Generalization [12.617078020344618]
We introduce an approach that combines rare events sampling techniques with neural network optimization to optimize objective functions dominated by rare events.
We show that importance sampling reduces the variance of the solution to a learning problem, suggesting benefits for generalization.
Our numerical experiments demonstrate that we can successfully learn even with the compounding difficulties of high-dimensional and rare data.
arXiv Detail & Related papers (2020-08-11T23:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.