Trainability maximization using estimation of distribution algorithms assisted by surrogate modelling for quantum architecture search
- URL: http://arxiv.org/abs/2407.20091v1
- Date: Mon, 29 Jul 2024 15:22:39 GMT
- Title: Trainability maximization using estimation of distribution algorithms assisted by surrogate modelling for quantum architecture search
- Authors: Vicente P. Soloviev, Vedran Dunjko, Concha Bielza, Pedro LarraƱaga, Hao Wang,
- Abstract summary: Quantum architecture search (QAS) involves optimizing both the quantum parametric circuit configuration but also its parameters for a variational quantum algorithm.
In this paper, we aim to achieve two improvements in QAS: (1) to reduce the number of measurements by an online surrogate model of the evaluation process that aggressively discards architectures of poor performance; (2) to avoid training the circuits when BPs are present.
We experimentally validate our proposal for the variational quantum eigensolver and showcase that our algorithm is able to find solutions that have been previously proposed in the literature for the Hamiltonians; but also to outperform the state of the
- Score: 8.226785409557598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum architecture search (QAS) involves optimizing both the quantum parametric circuit configuration but also its parameters for a variational quantum algorithm. Thus, the problem is known to be multi-level as the performance of a given architecture is unknown until its parameters are tuned using classical routines. Moreover, the task becomes even more complicated since well-known trainability issues, e.g., barren plateaus (BPs), can occur. In this paper, we aim to achieve two improvements in QAS: (1) to reduce the number of measurements by an online surrogate model of the evaluation process that aggressively discards architectures of poor performance; (2) to avoid training the circuits when BPs are present. To detect the presence of the BPs, we employed a recently developed metric, information content, which only requires measuring the energy values of a small set of parameters to estimate the magnitude of cost function's gradient. The main idea of this proposal is to leverage a recently developed metric which can be used to detect the onset of vanishing gradients to ensure the overall search avoids such unfavorable regions. We experimentally validate our proposal for the variational quantum eigensolver and showcase that our algorithm is able to find solutions that have been previously proposed in the literature for the Hamiltonians; but also to outperform the state of the art when initializing the method from the set of architectures proposed in the literature. The results suggest that the proposed methodology could be used in environments where it is desired to improve the trainability of known architectures while maintaining good performance.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - Quantum Architecture Search with Unsupervised Representation Learning [24.698519892763283]
Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS)
QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs)
arXiv Detail & Related papers (2024-01-21T19:53:17Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes [0.0]
Variational quantum algorithms (VQAs) represent a promising approach to utilizing current quantum computing infrastructures.
We propose the quantum Broyden adaptive natural gradient (qBang) approach, a novel that aims to distill the best aspects of existing approaches.
arXiv Detail & Related papers (2023-04-27T00:06:48Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
We introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra.
A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture.
arXiv Detail & Related papers (2022-09-28T20:24:53Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - Quantum Embedding Search for Quantum Machine Learning [2.7612093695074456]
We introduce a novel quantum embedding search algorithm (QES), pronounced as "quest"
We establish the connection between the structures of quantum embedding and the representations of directed multi-graphs, enabling a well-defined search space.
We demonstrate the feasibility of our proposed approach on synthesis and Iris datasets, which empirically shows that quantum embedding architecture by QES outperforms manual designs.
arXiv Detail & Related papers (2021-05-25T11:50:57Z) - Gradient-free quantum optimization on NISQ devices [0.0]
We consider recent advances in weight-agnostic learning and propose a strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning.
We investigate the use of NEAT-inspired algorithms which evaluate circuits via genetic competition and thus circumvent issues due to exceeding numbers of parameters.
arXiv Detail & Related papers (2020-12-23T10:24:54Z) - High Dimensional Level Set Estimation with Bayesian Neural Network [58.684954492439424]
This paper proposes novel methods to solve the high dimensional Level Set Estimation problems using Bayesian Neural Networks.
For each problem, we derive the corresponding theoretic information based acquisition function to sample the data points.
Numerical experiments on both synthetic and real-world datasets show that our proposed method can achieve better results compared to existing state-of-the-art approaches.
arXiv Detail & Related papers (2020-12-17T23:21:53Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.