論文の概要: CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth
- arxiv url: http://arxiv.org/abs/2012.10133v1
- Date: Fri, 18 Dec 2020 09:42:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 18:12:43.392651
- Title: CodeVIO: Visual-Inertial Odometry with Learned Optimizable Dense Depth
- Title(参考訳): CodeVIO: 学習可能なDense深さを持つビジュアル慣性オドメトリー
- Authors: Xingxing Zuo, Nathaniel Merrill, Wei Li, Yong Liu, Marc Pollefeys,
Guoquan Huang
- Abstract要約: 本稿では,軽量で密結合の深い深度ネットワークと視覚慣性オドメトリーシステムを提案する。
初期深度予測の精度を高めるために,vio のそれまでの疎結合な特徴をネットワークに提供する。
ネットワークとコードにのみGPUアクセラレーションを利用しながら、シングルスレッド実行でリアルタイムに実行できることを示します。
- 参考スコア(独自算出の注目度): 85.8787539999447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a lightweight, tightly-coupled deep depth network
and visual-inertial odometry (VIO) system, which can provide accurate state
estimates and dense depth maps of the immediate surroundings. Leveraging the
proposed lightweight Conditional Variational Autoencoder (CVAE) for depth
inference and encoding, we provide the network with previously marginalized
sparse features from VIO to increase the accuracy of initial depth prediction
and generalization capability. The compact encoded depth maps are then updated
jointly with navigation states in a sliding window estimator in order to
provide the dense local scene geometry. We additionally propose a novel method
to obtain the CVAE's Jacobian which is shown to be more than an order of
magnitude faster than previous works, and we additionally leverage
First-Estimate Jacobian (FEJ) to avoid recalculation. As opposed to previous
works relying on completely dense residuals, we propose to only provide sparse
measurements to update the depth code and show through careful experimentation
that our choice of sparse measurements and FEJs can still significantly improve
the estimated depth maps. Our full system also exhibits state-of-the-art pose
estimation accuracy, and we show that it can run in real-time with
single-thread execution while utilizing GPU acceleration only for the network
and code Jacobian.
- Abstract(参考訳): 本研究では,高精度な状態推定と深度マップを提供する,軽量で密結合の深度ネットワークと視覚慣性オドメトリー(VIO)システムを提案する。
提案する軽量条件付き変分オートエンコーダ(cvae)を奥行き推定とエンコーディングに活用し,vioのそれまでの細分化された特徴をネットワークに与え,初期深度予測と一般化能力の精度を向上させる。
コンパクトなエンコードされた深度マップは、密集したローカルシーンの幾何学を提供するために、スライディングウィンドウ推定器のナビゲーション状態と共同で更新される。
また, CVAE のジャコビアンを従来よりも1桁以上高速に取得できる新しい手法を提案し, また, 第一推定ジャコビアン (FEJ) を用いて再計算を回避する。
完全高密度残差に依存する従来の研究とは対照的に、深度コード更新のための疎度測定のみを提供し、スパース測定とFEJの選択が依然として推定深度マップを大幅に改善できることを示す。
また,本システムでは,ネットワークとコードヤコビアンにのみGPUアクセラレーションを活用しながら,シングルスレッド実行でリアルタイムに動作可能であることを示す。
関連論文リスト
- Temporal Lidar Depth Completion [0.08192907805418582]
PENetは, 再発の恩恵を受けるために, 最新の手法であるPENetをどう修正するかを示す。
提案アルゴリズムは,KITTI深度補完データセットの最先端結果を実現する。
論文 参考訳(メタデータ) (2024-06-17T08:25:31Z) - Metrically Scaled Monocular Depth Estimation through Sparse Priors for
Underwater Robots [0.0]
三角特徴量からのスパース深度測定を融合して深度予測を改善する深度学習モデルを定式化する。
このネットワークは、前方に見える水中データセットFLSeaで教師ありの方法で訓練されている。
この方法は、ラップトップGPUで160FPS、単一のCPUコアで7FPSで実行することで、リアルタイムのパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-25T16:32:31Z) - Monocular Visual-Inertial Depth Estimation [66.71452943981558]
単眼深度推定と視覚慣性計測を統合した視覚慣性深度推定パイプラインを提案する。
提案手法は, 疎度度に対する大域的スケールとシフトアライメントを行い, 続いて学習に基づく高密度アライメントを行う。
本研究では,TartanAir と VOID のデータセットを用いて,密集したスケールアライメントによるRMSE の最大30%の削減を観測した。
論文 参考訳(メタデータ) (2023-03-21T18:47:34Z) - VA-DepthNet: A Variational Approach to Single Image Depth Prediction [163.14849753700682]
VA-DepthNetは、単一画像深度予測問題に対する単純で効果的で正確なディープニューラルネットワークアプローチである。
本論文は,複数のベンチマークデータセットに対する広範囲な評価とアブレーション解析により提案手法の有用性を実証する。
論文 参考訳(メタデータ) (2023-02-13T17:55:58Z) - Lightweight Monocular Depth Estimation with an Edge Guided Network [34.03711454383413]
本稿では,新しいエッジガイド深度推定ネットワーク(EGD-Net)を提案する。
特に、軽量なエンコーダデコーダアーキテクチャから始め、エッジガイダンスブランチを組み込む。
コンテクスト情報とエッジアテンション特徴を集約するために,トランスフォーマーをベースとした機能アグリゲーションモジュールを設計する。
論文 参考訳(メタデータ) (2022-09-29T14:45:47Z) - Depth Completion using Plane-Residual Representation [84.63079529738924]
深度情報を最も近い深度平面ラベル$p$と残値$r$で解釈する新しい方法を紹介し,これをPlane-Residual (PR)表現と呼ぶ。
PR表現で深度情報を解釈し,それに対応する深度補完網を用いて,高速な計算により深度補完性能を向上させることができた。
論文 参考訳(メタデータ) (2021-04-15T10:17:53Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
コスト効率のよいセンサで得られたデータからシーン形状を推定することは、ロボットや自動運転車にとって鍵となる。
本稿では,1枚のRGB画像から,低コストな能動深度センサによるスパース計測により,深度を推定する問題について検討する。
sparse networks (sans) は,深さ予測と完了という2つのタスクをmonodepthネットワークで実行可能にする,新しいモジュールである。
論文 参考訳(メタデータ) (2021-03-30T21:22:26Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
PLADE-Netと呼ばれる自己監視型単視点画素レベルの高精度深度推定ネットワークを提案する。
提案手法は,KITTIデータセットの$delta1$測定値の95%を超え,前例のない精度を示す。
論文 参考訳(メタデータ) (2021-03-12T15:54:46Z) - Deep Multi-view Depth Estimation with Predicted Uncertainty [11.012201499666503]
我々は、高密度光フローネットワークを用いて対応を計算し、点雲を三角測量して初期深度マップを得る。
三角測量の精度をさらに高めるため,画像の文脈に基づく初期深度マップを最適化する深度補正ネットワーク(DRN)を導入する。
論文 参考訳(メタデータ) (2020-11-19T00:22:09Z) - Towards Better Generalization: Joint Depth-Pose Learning without PoseNet [36.414471128890284]
自己教師型共同深層学習におけるスケール不整合の本質的問題に対処する。
既存の手法の多くは、全ての入力サンプルで一貫した深さとポーズを学習できると仮定している。
本稿では,ネットワーク推定からスケールを明示的に切り離す新しいシステムを提案する。
論文 参考訳(メタデータ) (2020-04-03T00:28:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。