Computer-aided abnormality detection in chest radiographs in a clinical
setting via domain-adaptation
- URL: http://arxiv.org/abs/2012.10564v1
- Date: Sat, 19 Dec 2020 01:01:48 GMT
- Title: Computer-aided abnormality detection in chest radiographs in a clinical
setting via domain-adaptation
- Authors: Abhishek K Dubey, Michael T Young, Christopher Stanley, Dalton Lunga,
Jacob Hinkle
- Abstract summary: Deep learning (DL) models are being deployed at medical centers to aid radiologists for diagnosis of lung conditions from chest radiographs.
These pre-trained DL models' ability to generalize in clinical settings is poor because of the changes in data distributions between publicly available and privately held radiographs.
In this work, we introduce a domain-shift detection and removal method to overcome this problem.
- Score: 0.23624125155742057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL) models are being deployed at medical centers to aid
radiologists for diagnosis of lung conditions from chest radiographs. Such
models are often trained on a large volume of publicly available labeled
radiographs. These pre-trained DL models' ability to generalize in clinical
settings is poor because of the changes in data distributions between publicly
available and privately held radiographs. In chest radiographs, the
heterogeneity in distributions arises from the diverse conditions in X-ray
equipment and their configurations used for generating the images. In the
machine learning community, the challenges posed by the heterogeneity in the
data generation source is known as domain shift, which is a mode shift in the
generative model. In this work, we introduce a domain-shift detection and
removal method to overcome this problem. Our experimental results show the
proposed method's effectiveness in deploying a pre-trained DL model for
abnormality detection in chest radiographs in a clinical setting.
Related papers
- Generation of Anonymous Chest Radiographs Using Latent Diffusion Models
for Training Thoracic Abnormality Classification Systems [7.909848251752742]
Biometric identifiers in chest radiographs hinder the public sharing of such data for research purposes.
This work employs a latent diffusion model to synthesize an anonymous chest X-ray dataset of high-quality class-conditional images.
arXiv Detail & Related papers (2022-11-02T17:43:02Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Margin-Aware Intra-Class Novelty Identification for Medical Images [2.647674705784439]
We propose a hybrid model - Transformation-based Embedding learning for Novelty Detection (TEND)
With a pre-trained autoencoder as image feature extractor, TEND learns to discriminate the feature embeddings of in-distribution data from the transformed counterparts as fake out-of-distribution inputs.
arXiv Detail & Related papers (2021-07-31T00:10:26Z) - Contrastive Attention for Automatic Chest X-ray Report Generation [124.60087367316531]
In most cases, the normal regions dominate the entire chest X-ray image, and the corresponding descriptions of these normal regions dominate the final report.
We propose Contrastive Attention (CA) model, which compares the current input image with normal images to distill the contrastive information.
We achieve the state-of-the-art results on the two public datasets.
arXiv Detail & Related papers (2021-06-13T11:20:31Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z) - Evaluation of Contemporary Convolutional Neural Network Architectures
for Detecting COVID-19 from Chest Radiographs [0.0]
We train and evaluate three model architectures, proposed for chest radiograph analysis, under varying conditions.
We find issues that discount the impressive model performances proposed by contemporary studies on this subject.
arXiv Detail & Related papers (2020-06-30T15:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.