論文の概要: Camera-aware Proxies for Unsupervised Person Re-Identification
- arxiv url: http://arxiv.org/abs/2012.10674v2
- Date: Fri, 5 Feb 2021 12:41:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 11:11:46.752137
- Title: Camera-aware Proxies for Unsupervised Person Re-Identification
- Title(参考訳): 被監視者再確認のためのカメラアウェアプロキシ
- Authors: Menglin Wang, Baisheng Lai, Jianqiang Huang, Xiaojin Gong, Xian-Sheng
Hua
- Abstract要約: 本稿では、アノテーションを必要としない純粋に教師なしの人物識別(Re-ID)問題に取り組む。
各クラスタを複数のプロキシに分割し、それぞれのプロキシが同じカメラからのインスタンスを表すことを提案する。
カメラ認識プロキシに基づいて、カメラ内およびカメラ間コントラスト学習コンポーネントをre-idモデル用に設計する。
- 参考スコア(独自算出の注目度): 60.26031011794513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles the purely unsupervised person re-identification (Re-ID)
problem that requires no annotations. Some previous methods adopt clustering
techniques to generate pseudo labels and use the produced labels to train Re-ID
models progressively. These methods are relatively simple but effective.
However, most clustering-based methods take each cluster as a pseudo identity
class, neglecting the large intra-ID variance caused mainly by the change of
camera views. To address this issue, we propose to split each single cluster
into multiple proxies and each proxy represents the instances coming from the
same camera. These camera-aware proxies enable us to deal with large intra-ID
variance and generate more reliable pseudo labels for learning. Based on the
camera-aware proxies, we design both intra- and inter-camera contrastive
learning components for our Re-ID model to effectively learn the ID
discrimination ability within and across cameras. Meanwhile, a proxy-balanced
sampling strategy is also designed, which facilitates our learning further.
Extensive experiments on three large-scale Re-ID datasets show that our
proposed approach outperforms most unsupervised methods by a significant
margin. Especially, on the challenging MSMT17 dataset, we gain $14.3\%$ Rank-1
and $10.2\%$ mAP improvements when compared to the second place. Code is
available at: \texttt{https://github.com/Terminator8758/CAP-master}.
- Abstract(参考訳): 本稿では、アノテーションを必要としない純粋に教師なしの人物識別(Re-ID)問題に取り組む。
従来の手法では、クラスタリング技術を使って擬似ラベルを生成し、生成したラベルを使ってRe-IDモデルを徐々に訓練していた。
これらの方法は比較的単純だが効果的である。
しかし、クラスタリングに基づくほとんどの手法は、カメラビューの変化による大きなID内分散を無視して、クラスタを擬似アイデンティティクラスとして捉えている。
この問題に対処するため、各クラスタを複数のプロキシに分割し、それぞれのプロキシが同じカメラからのインスタンスを表すことを提案する。
これらのカメラ対応プロキシにより、ID内の大きな分散に対処し、学習のためのより信頼性の高い擬似ラベルを生成することができる。
カメラ認識プロキシに基づいて、Re-IDモデルのためのカメラ内およびカメラ間コントラスト学習コンポーネントを設計し、カメラ内およびカメラ間のID識別能力を効果的に学習する。
一方、プロキシバランスのサンプリング戦略も設計されており、さらなる学習を容易にする。
3つの大規模なre-idデータセットに関する広範囲な実験により,提案手法が教師なし手法よりも有意な差を示した。
特に、挑戦的なMSMT17データセットでは、第2位に比べて14.3\%$ Rank-1と10.2\%$ mAPが改善されている。
コードは: \texttt{https://github.com/Terminator8758/CAP-master}で入手できる。
関連論文リスト
- Synthesizing Efficient Data with Diffusion Models for Person Re-Identification Pre-Training [51.87027943520492]
本稿では,既知の同一性に基づく多様な画像の効率向上と生成を行う新しいパラダイムDiffusion-ReIDを提案する。
提案したパラダイムに適合して,まず,5,183個のIDから777K以上の画像で構成された,大規模なRe-IDデータセットDiff-Personを新たに作成する。
論文 参考訳(メタデータ) (2024-06-10T06:26:03Z) - Pseudo Labels Refinement with Intra-camera Similarity for Unsupervised
Person Re-identification [8.779246907359706]
監視されていない人物の再識別(Re-ID)は、識別ラベルなしでカメラを介して人物画像を取得することを目的としている。
クラスタリングに基づくほとんどの手法は、画像の特徴を大まかにクラスタに分割し、異なるカメラ間のドメインシフトに起因する特徴分布ノイズを無視する。
本稿では,カメラ内類似点をクラスタリングする新しいラベルリファインメントフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-25T08:04:12Z) - Offline-Online Associated Camera-Aware Proxies for Unsupervised Person
Re-identification [31.065557919305892]
教師なしの人物再識別(Re-ID)は研究の注目を集めている。
ほとんどのクラスタリングベースのメソッドは、各クラスタを擬似IDクラスとして扱う。
カメラビューに応じて,各クラスタを複数のプロキシに分割することを提案する。
論文 参考訳(メタデータ) (2022-01-15T10:12:03Z) - Unsupervised Pretraining for Object Detection by Patch Reidentification [72.75287435882798]
教師なし表現学習は、オブジェクトディテクタの事前トレーニング表現で有望なパフォーマンスを実現します。
本研究では,オブジェクト検出のための簡易かつ効果的な表現学習手法であるパッチ再識別(Re-ID)を提案する。
私たちの方法は、トレーニングの反復やデータパーセンテージなど、すべての設定でCOCOの同等を大幅に上回ります。
論文 参考訳(メタデータ) (2021-03-08T15:13:59Z) - Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for
Unsupervised Person Re-Identification [60.36551512902312]
unsupervised person re-identification (re-ID) は、ラベルのないデータで識別モデルを学ぶことを目的としている。
一般的な方法としては、クラスタ化によって擬似ラベルを取得し、モデルを最適化するために使用する方法がある。
本稿では,両問題を解決するための統一フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-08T09:13:06Z) - Learn by Guessing: Multi-Step Pseudo-Label Refinement for Person
Re-Identification [0.0]
有望なアプローチは、パイプラインの一部として教師なし学習を使用することに依存する。
本稿では,最善のクラスタを選択できるマルチステップ擬似ラベルリファインメント手法を提案する。
我々は、Market1501-DukeMTMCデータセットでUDA Re-IDの最先端を3.4%上回る。
論文 参考訳(メタデータ) (2021-01-04T20:00:33Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
人物再識別(re-ID)はコンピュータビジョンにおいて重要なトピックである。
本稿では,ラベル付き情報を必要としないre-IDの教師なし設定について検討する。
2つの画像ベースおよびビデオベースデータセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-04-07T17:16:41Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
本稿では,カメラごとの個人識別アノテーションに基づく新しい人物識別パラダイムを提案する。
これにより、最も時間がかかり、面倒なカメラ間IDラベリングプロセスがなくなる。
MATE(Multi-tAsk mulTi-labEl)Deep Learning method for intra-Camera Supervised (ICS) person re-id。
論文 参考訳(メタデータ) (2020-02-12T15:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。