Anchor-Based Spatial-Temporal Attention Convolutional Networks for
Dynamic 3D Point Cloud Sequences
- URL: http://arxiv.org/abs/2012.10860v1
- Date: Sun, 20 Dec 2020 07:35:37 GMT
- Title: Anchor-Based Spatial-Temporal Attention Convolutional Networks for
Dynamic 3D Point Cloud Sequences
- Authors: Guangming Wang, Hanwen Liu, Muyao Chen, Yehui Yang, Zhe Liu, Hesheng
Wang
- Abstract summary: Anchor-based Spatial-Temporal Attention Convolution operation (ASTAConv) is proposed in this paper to process dynamic 3D point cloud sequences.
The proposed convolution operation builds a regular receptive field around each point by setting several virtual anchors around each point.
The proposed method makes better use of the structured information within the local region, and learn spatial-temporal embedding features from dynamic 3D point cloud sequences.
- Score: 20.697745449159097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, learning based methods for the robot perception from the image or
video have much developed, but deep learning methods for dynamic 3D point cloud
sequences are underexplored. With the widespread application of 3D sensors such
as LiDAR and depth camera, efficient and accurate perception of the 3D
environment from 3D sequence data is pivotal to autonomous driving and service
robots. An Anchor-based Spatial-Temporal Attention Convolution operation
(ASTAConv) is proposed in this paper to process dynamic 3D point cloud
sequences. The proposed convolution operation builds a regular receptive field
around each point by setting several virtual anchors around each point. The
features of neighborhood points are firstly aggregated to each anchor based on
spatial-temporal attention mechanism. Then, anchor-based sparse 3D convolution
is adopted to aggregate the features of these anchors to the core points. The
proposed method makes better use of the structured information within the local
region, and learn spatial-temporal embedding features from dynamic 3D point
cloud sequences. Then Anchor-based Spatial-Temporal Attention Convolutional
Neural Networks (ASTACNNs) are proposed for classification and segmentation
tasks and are evaluated on action recognition and semantic segmentation tasks.
The experimental results on MSRAction3D and Synthia datasets demonstrate that
the higher accuracy can be achieved than the previous state-of-the-art method
by our novel strategy of multi-frame fusion.
Related papers
- Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3D point cloud sequences serve as one of the most common and practical representation modalities of real-world environments.
We propose a novel generic representation called textitStructured Point Cloud Videos (SPCVs)
SPCVs re-organizes a point cloud sequence as a 2D video with spatial smoothness and temporal consistency, where the pixel values correspond to the 3D coordinates of points.
arXiv Detail & Related papers (2024-03-02T08:18:57Z) - SpATr: MoCap 3D Human Action Recognition based on Spiral Auto-encoder and Transformer Network [1.4732811715354455]
We introduce a novel approach for 3D human action recognition, denoted as SpATr (Spiral Auto-encoder and Transformer Network)
A lightweight auto-encoder, based on spiral convolutions, is employed to extract spatial geometrical features from each 3D mesh.
The proposed method is evaluated on three prominent 3D human action datasets: Babel, MoVi, and BMLrub.
arXiv Detail & Related papers (2023-06-30T11:49:00Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
We propose an alternative approach to overcome the limitations of CNN based approaches by encoding the spatial features of raw 3D point clouds into undirected graph models.
The proposed method achieves on par state-of-the-art accuracy with improved training time and model stability thus indicating strong potential for further research.
arXiv Detail & Related papers (2020-11-29T12:56:19Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
Point cloud semantic segmentation plays an essential role in autonomous driving.
Current 3D semantic segmentation networks focus on convolutional architectures that perform great for well represented classes.
We propose a novel Aware 3D Semantic Detection (DASS) framework that explicitly leverages localization features from an auxiliary 3D object detection task.
arXiv Detail & Related papers (2020-09-22T14:17:40Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
We leverage a 3D fully convolutional network for 3D point clouds.
We propose a novel and practical learning mechanism that densely predicts both a detection score and a description feature for each 3D point.
Our method achieves state-of-the-art results in both indoor and outdoor scenarios.
arXiv Detail & Related papers (2020-03-06T12:51:09Z) - PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection [76.30585706811993]
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN)
Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction.
It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks.
arXiv Detail & Related papers (2019-12-31T06:34:10Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
A pointwise attention-based atrous convolutional neural network architecture is proposed to efficiently deal with a large number of points.
The proposed model has been evaluated on the two most important 3D point cloud datasets for the 3D semantic segmentation task.
It achieves a reasonable performance compared to state-of-the-art models in terms of accuracy, with a much smaller number of parameters.
arXiv Detail & Related papers (2019-12-27T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.