Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection
- URL: http://arxiv.org/abs/2006.05187v1
- Date: Tue, 9 Jun 2020 11:19:24 GMT
- Title: Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection
- Authors: Qingdong He, Zhengning Wang, Hao Zeng, Yijun Liu, Shuaicheng Liu, Bing
Zeng
- Abstract summary: 3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
- Score: 40.34710686994996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D object detection has become an emerging task in autonomous driving
scenarios. Previous works process 3D point clouds using either projection-based
or voxel-based models. However, both approaches contain some drawbacks. The
voxel-based methods lack semantic information, while the projection-based
methods suffer from numerous spatial information loss when projected to
different views. In this paper, we propose the Stereo RGB and Deeper LIDAR
(SRDL) framework which can utilize semantic and spatial information
simultaneously such that the performance of network for 3D object detection can
be improved naturally. Specifically, the network generates candidate boxes from
stereo pairs and combines different region-wise features using a deep fusion
scheme. The stereo strategy offers more information for prediction compared
with prior works. Then, several local and global feature extractors are stacked
in the segmentation module to capture richer deep semantic geometric features
from point clouds. After aligning the interior points with fused features, the
proposed network refines the prediction in a more accurate manner and encodes
the whole box in a novel compact method. The decent experimental results on the
challenging KITTI detection benchmark demonstrate the effectiveness of
utilizing both stereo images and point clouds for 3D object detection.
Related papers
- Surface-biased Multi-Level Context 3D Object Detection [1.9723551683930771]
This work addresses the object detection task in 3D point clouds using a highly efficient, surface-biased, feature extraction method (wang2022rbgnet)
We propose a 3D object detector that extracts accurate feature representations of object candidates and leverages self-attention on point patches, object candidates, and on the global scene in 3D scene.
arXiv Detail & Related papers (2023-02-13T11:50:04Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D.
Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group strategy on the object surface voxels.
To recover the features of missed voxels due to incorrect voxel-wise segmentation, we build a fully sparse convolutional RoI pooling module.
arXiv Detail & Related papers (2022-10-09T13:38:48Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud [20.84329063509459]
LiDAR-based 3D object detection pushes forward an immense influence on autonomous vehicles.
Due to the limitation of the intrinsic properties of LiDAR, fewer points are collected at the objects farther away from the sensor.
To address the challenge, we propose a novel two-stage 3D object detection framework, named SIENet.
arXiv Detail & Related papers (2021-03-29T07:45:09Z) - Ground-aware Monocular 3D Object Detection for Autonomous Driving [6.5702792909006735]
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a challenging task for low-cost urban autonomous driving and mobile robots.
Most of the existing algorithms are based on the geometric constraints in 2D-3D correspondence, which stems from generic 6D object pose estimation.
We introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning.
arXiv Detail & Related papers (2021-02-01T08:18:24Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
There is a large performance gap between image-based and LiDAR-based 3D object detectors.
Our method, called Deep Stereo Geometry Network (DSGN), significantly reduces this gap.
For the first time, we provide a simple and effective one-stage stereo-based 3D detection pipeline.
arXiv Detail & Related papers (2020-01-10T11:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.