Multi-Head Linear Attention Generative Adversarial Network for Thin
Cloud Removal
- URL: http://arxiv.org/abs/2012.10898v1
- Date: Sun, 20 Dec 2020 11:50:54 GMT
- Title: Multi-Head Linear Attention Generative Adversarial Network for Thin
Cloud Removal
- Authors: Chenxi Duan, Rui Li
- Abstract summary: thin cloud removal is an indispensable procedure to enhance the utilization of remote sensing images.
We propose a Multi-Head Linear Attention Generative Adversarial Network (MLAGAN) for Thin Cloud Removal.
Compared with six deep learning-based thin cloud removal benchmarks, the experimental results on the RICE1 and RICE2 datasets demonstrate that the proposed framework MLA-GAN has dominant advantages in thin cloud removal.
- Score: 5.753245638190626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In remote sensing images, the existence of the thin cloud is an inevitable
and ubiquitous phenomenon that crucially reduces the quality of imageries and
limits the scenarios of application. Therefore, thin cloud removal is an
indispensable procedure to enhance the utilization of remote sensing images.
Generally, even though contaminated by thin clouds, the pixels still retain
more or less surface information. Hence, different from thick cloud removal,
thin cloud removal algorithms normally concentrate on inhibiting the cloud
influence rather than substituting the cloud-contaminated pixels. Meanwhile,
considering the surface features obscured by the cloud are usually similar to
adjacent areas, the dependency between each pixel of the input is useful to
reconstruct contaminated areas. In this paper, to make full use of the
dependencies between pixels of the image, we propose a Multi-Head Linear
Attention Generative Adversarial Network (MLAGAN) for Thin Cloud Removal. The
MLA-GAN is based on the encoding-decoding framework consisting of multiple
attention-based layers and deconvolutional layers. Compared with six deep
learning-based thin cloud removal benchmarks, the experimental results on the
RICE1 and RICE2 datasets demonstrate that the proposed framework MLA-GAN has
dominant advantages in thin cloud removal.
Related papers
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
We present an iterative diffusion process for cloud removal (IDF-CR)
IDF-CR is divided into two-stage models that address pixel space and latent space.
In the latent space stage, the diffusion model transforms low-quality cloud removal into high-quality clean output.
arXiv Detail & Related papers (2024-03-18T15:23:48Z) - Dynamic Association Learning of Self-Attention and Convolution in Image
Restoration [56.49098856632478]
CNNs and Self attention have achieved great success in multimedia applications for dynamic association learning of self-attention and convolution in image restoration.
This paper proposes an association learning method to utilize the advantages and suppress their shortcomings, so as to achieve high-quality and efficient inpainting.
arXiv Detail & Related papers (2023-11-09T05:11:24Z) - Boosting Point Clouds Rendering via Radiance Mapping [49.24193509772339]
We focus on boosting the image quality of point clouds rendering with a compact model design.
We simplify the NeRF representation to a spatial mapping function which only requires single evaluation per pixel.
Our method achieves the state-of-the-art rendering on point clouds, outperforming prior works by notable margins.
arXiv Detail & Related papers (2022-10-27T01:25:57Z) - SSPU-Net: Self-Supervised Point Cloud Upsampling via Differentiable
Rendering [21.563862632172363]
We propose a self-supervised point cloud upsampling network (SSPU-Net) to generate dense point clouds without using ground truth.
To achieve this, we exploit the consistency between the input sparse point cloud and generated dense point cloud for the shapes and rendered images.
arXiv Detail & Related papers (2021-08-01T13:26:01Z) - Cloud removal in remote sensing images using generative adversarial
networks and SAR-to-optical image translation [0.618778092044887]
Cloud removal has received much attention due to the wide range of satellite image applications.
In this study, we attempt to solve the problem using two generative adversarial networks (GANs)
The first translates SAR images into optical images, and the second removes clouds using the translated images of prior GAN.
arXiv Detail & Related papers (2020-12-22T17:19:14Z) - Cloud Removal for Remote Sensing Imagery via Spatial Attention
Generative Adversarial Network [0.9746724603067647]
We propose a model named spatial attention generative adversarial network (SpA GAN) to solve the remote sensing imagery cloud removal task.
SpA GAN imitates the human visual mechanism, and recognizes and focuses the cloud area with local-to-global spatial attention.
arXiv Detail & Related papers (2020-09-28T02:13:23Z) - Thick Cloud Removal of Remote Sensing Images Using Temporal Smoothness
and Sparsity-Regularized Tensor Optimization [3.65794756599491]
In remote sensing images, the presence of thick cloud accompanying cloud shadow is a high probability event.
A novel thick cloud removal method for remote sensing images based on temporal smoothness and sparsity-regularized tensor optimization is proposed.
arXiv Detail & Related papers (2020-08-11T05:59:20Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.