Thick Cloud Removal of Remote Sensing Images Using Temporal Smoothness
and Sparsity-Regularized Tensor Optimization
- URL: http://arxiv.org/abs/2008.04529v2
- Date: Tue, 1 Sep 2020 04:28:23 GMT
- Title: Thick Cloud Removal of Remote Sensing Images Using Temporal Smoothness
and Sparsity-Regularized Tensor Optimization
- Authors: Chenxi Duan, Jun Pan, Rui Li
- Abstract summary: In remote sensing images, the presence of thick cloud accompanying cloud shadow is a high probability event.
A novel thick cloud removal method for remote sensing images based on temporal smoothness and sparsity-regularized tensor optimization is proposed.
- Score: 3.65794756599491
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In remote sensing images, the presence of thick cloud accompanying cloud
shadow is a high probability event, which can affect the quality of subsequent
processing and limit the scenarios of application. Hence, removing the thick
cloud and cloud shadow as well as recovering the cloud-contaminated pixels is
indispensable to make good use of remote sensing images. In this paper, a novel
thick cloud removal method for remote sensing images based on temporal
smoothness and sparsity-regularized tensor optimization (TSSTO) is proposed.
The basic idea of TSSTO is that the thick cloud and cloud shadow are not only
sparse but also smooth along the horizontal and vertical direction in images
while the clean images are smooth along the temporal direction between images.
Therefore, the sparsity norm is used to boost the sparsity of the cloud and
cloud shadow, and unidirectional total variation (UTV) regularizers are applied
to ensure the unidirectional smoothness. This paper utilizes alternation
direction method of multipliers to solve the presented model and generate the
cloud and cloud shadow element as well as the clean element. The cloud and
cloud shadow element is purified to get the cloud area and cloud shadow area.
Then, the clean area of the original cloud-contaminated images is replaced to
the corresponding area of the clean element. Finally, the reference image is
selected to reconstruct details of the cloud area and cloud shadow area using
the information cloning method. A series of experiments are conducted both on
simulated and real cloud-contaminated images from different sensors and with
different resolutions, and the results demonstrate the potential of the
proposed TSSTO method for removing cloud and cloud shadow from both qualitative
and quantitative viewpoints.
Related papers
- Rendering-Oriented 3D Point Cloud Attribute Compression using Sparse Tensor-based Transformer [52.40992954884257]
3D visualization techniques have fundamentally transformed how we interact with digital content.
Massive data size of point clouds presents significant challenges in data compression.
We propose an end-to-end deep learning framework that seamlessly integrates PCAC with differentiable rendering.
arXiv Detail & Related papers (2024-11-12T16:12:51Z) - GPN: Generative Point-based NeRF [0.65268245109828]
We propose using Generative Point-based NeRF (GPN) to reconstruct and repair a partial cloud.
The repaired point cloud can achieve multi-view consistency with the captured images at high spatial resolution.
arXiv Detail & Related papers (2024-04-12T08:14:17Z) - Few-shot point cloud reconstruction and denoising via learned Guassian splats renderings and fine-tuned diffusion features [52.62053703535824]
We propose a method to reconstruct point clouds from few images and to denoise point clouds from their rendering.
To improve reconstruction in constraint settings, we regularize the training of a differentiable with hybrid surface and appearance.
We demonstrate how these learned filters can be used to remove point cloud noise coming without 3D supervision.
arXiv Detail & Related papers (2024-04-01T13:38:16Z) - IDF-CR: Iterative Diffusion Process for Divide-and-Conquer Cloud Removal in Remote-sensing Images [55.40601468843028]
We present an iterative diffusion process for cloud removal (IDF-CR)
IDF-CR is divided into two-stage models that address pixel space and latent space.
In the latent space stage, the diffusion model transforms low-quality cloud removal into high-quality clean output.
arXiv Detail & Related papers (2024-03-18T15:23:48Z) - UnCRtainTS: Uncertainty Quantification for Cloud Removal in Optical
Satellite Time Series [19.32220113046804]
We introduce UnCRtainTS, a method for multi-temporal cloud removal combining a novel attention-based architecture.
We show how the well-calibrated predicted uncertainties enable a precise control of the reconstruction quality.
arXiv Detail & Related papers (2023-04-11T19:27:18Z) - TriVol: Point Cloud Rendering via Triple Volumes [57.305748806545026]
We present a dense while lightweight 3D representation, named TriVol, that can be combined with NeRF to render photo-realistic images from point clouds.
Our framework has excellent generalization ability to render a category of scenes/objects without fine-tuning.
arXiv Detail & Related papers (2023-03-29T06:34:12Z) - Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural encoders.
The learned point-cloud can be easily integrated into various downstream tasks, including not only high-level rendering tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image rendering.
arXiv Detail & Related papers (2022-12-31T08:58:39Z) - Boosting Point Clouds Rendering via Radiance Mapping [49.24193509772339]
We focus on boosting the image quality of point clouds rendering with a compact model design.
We simplify the NeRF representation to a spatial mapping function which only requires single evaluation per pixel.
Our method achieves the state-of-the-art rendering on point clouds, outperforming prior works by notable margins.
arXiv Detail & Related papers (2022-10-27T01:25:57Z) - Multi-Head Linear Attention Generative Adversarial Network for Thin
Cloud Removal [5.753245638190626]
thin cloud removal is an indispensable procedure to enhance the utilization of remote sensing images.
We propose a Multi-Head Linear Attention Generative Adversarial Network (MLAGAN) for Thin Cloud Removal.
Compared with six deep learning-based thin cloud removal benchmarks, the experimental results on the RICE1 and RICE2 datasets demonstrate that the proposed framework MLA-GAN has dominant advantages in thin cloud removal.
arXiv Detail & Related papers (2020-12-20T11:50:54Z) - Generating the Cloud Motion Winds Field from Satellite Cloud Imagery
Using Deep Learning Approach [1.8655840060559172]
We explore the cloud motion winds algorithm based on data-driven deep learning approach.
We use deep learning model to automatically learn the motion feature representations and directly output the field of cloud motion winds.
We also try to use a single cloud imagery to predict the cloud motion winds field in a fixed region, which is impossible to achieve using traditional algorithms.
arXiv Detail & Related papers (2020-10-03T05:40:36Z) - Cloud and Cloud Shadow Segmentation for Remote Sensing Imagery via
Filtered Jaccard Loss Function and Parametric Augmentation [8.37609145576126]
Current methods for cloud/shadow identification in geospatial imagery are not as accurate as they should, especially in the presence of snow and haze.
This paper presents a deep learning-based framework for the detection of cloud/shadow in Landsat 8 images.
arXiv Detail & Related papers (2020-01-23T19:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.