論文の概要: Difference Rewards Policy Gradients
- arxiv url: http://arxiv.org/abs/2012.11258v1
- Date: Mon, 21 Dec 2020 11:23:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-27 13:30:01.408368
- Title: Difference Rewards Policy Gradients
- Title(参考訳): 政策グラディエントの違い
- Authors: Jacopo Castellini, Sam Devlin, Frans A. Oliehoek, Rahul Savani
- Abstract要約: 差分報酬と政策を組み合わせ、分散型政策の学習を可能にする新しいアルゴリズムを提案する。
報酬関数を直接異なることで、reinforce博士はq関数の学習に伴う困難を回避できる。
我々は、差分報酬を推定するために使用される追加の報酬ネットワークを学ぶDr.Reinforceのバージョンの有効性を示しています。
- 参考スコア(独自算出の注目度): 18.794133273736634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Policy gradient methods have become one of the most popular classes of
algorithms for multi-agent reinforcement learning. A key challenge, however,
that is not addressed by many of these methods is multi-agent credit
assignment: assessing an agent's contribution to the overall performance, which
is crucial for learning good policies. We propose a novel algorithm called
Dr.Reinforce that explicitly tackles this by combining difference rewards with
policy gradients to allow for learning decentralized policies when the reward
function is known. By differencing the reward function directly, Dr.Reinforce
avoids difficulties associated with learning the Q-function as done by
Counterfactual Multiagent Policy Gradients (COMA), a state-of-the-art
difference rewards method. For applications where the reward function is
unknown, we show the effectiveness of a version of Dr.Reinforce that learns an
additional reward network that is used to estimate the difference rewards.
- Abstract(参考訳): ポリシー勾配法は、マルチエージェント強化学習において最も一般的なアルゴリズムの1つである。
しかし、これらの方法の多くで対処されていない重要な課題は、マルチエージェントの信用割当である: エージェントの全体的なパフォーマンスへの貢献を評価することは、優れたポリシーを学ぶために不可欠である。
本稿では,報酬関数が知られている場合の分散型政策の学習を可能にするために,差分報酬と政策勾配を組み合わせたDr.Reinforceという新しいアルゴリズムを提案する。
報酬関数を直接区別することにより、Dr.Reinforceは、最先端の差分報酬法であるCOMA(Counterfactual Multiagent Policy Gradients)によるQ関数の学習に伴う困難を回避する。
報酬関数が未知のアプリケーションについては、reinforce が差分報酬を推定するために使用される追加の報酬ネットワークを学習するの有効性を示す。
関連論文リスト
- Improving Reward-Conditioned Policies for Multi-Armed Bandits using Normalized Weight Functions [8.90692770076582]
最近提案された報酬条件付き政策(RCP)は、強化学習において魅力的な代替手段を提供する。
従来の手法と比較して,RCPは収束が遅く,収束時に期待される報酬が劣っていることを示す。
我々は、この手法を一般化された余分化と呼び、その利点は、低い報酬に条件付けられた政策に対する負の重み付けが、結果の政策をそれらとより区別することができることである。
論文 参考訳(メタデータ) (2024-06-16T03:43:55Z) - A Novel Variational Lower Bound for Inverse Reinforcement Learning [5.370126167091961]
逆強化学習(IRL)は、専門家の軌道から報酬関数を学習しようとする。
IRL(VLB-IRL)のための新しい変分下界について述べる。
本手法は,学習した報酬関数の下で報酬関数とポリシーを同時に学習する。
論文 参考訳(メタデータ) (2023-11-07T03:50:43Z) - Dynamics-Aware Comparison of Learned Reward Functions [21.159457412742356]
報酬関数を学習する能力は、現実世界にインテリジェントエージェントを配置する上で重要な役割を果たす。
リワード関数は通常、最適化されたポリシーの振舞いを考慮することで比較されるが、このアプローチは報酬関数の欠陥を最適化に使用するポリシー探索アルゴリズムのそれと混同する。
そこで我々はDARD(Dynamics-Aware Reward Distance)を提案する。
論文 参考訳(メタデータ) (2022-01-25T03:48:00Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
我々は、期待される性能とリスクのバランスをとるために、新しいポリシー勾配スタイルのロバスト最適化手法PG-BROILを導出する。
その結果,PG-BROILはリスクニュートラルからリスク・アバースまでの行動のファミリを創出できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-11T16:49:15Z) - Semi-On-Policy Training for Sample Efficient Multi-Agent Policy
Gradients [51.749831824106046]
本稿では,オンライン政策グラデーション手法のサンプル非効率性に効果的かつ効率的な手法として,セミ・オン・ポリティ(SOP)トレーニングを導入する。
提案手法は,様々なSMACタスクにおいて,最先端の値ベース手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-04-27T19:37:01Z) - Replacing Rewards with Examples: Example-Based Policy Search via
Recursive Classification [133.20816939521941]
標準的なマルコフ決定プロセス形式では、ユーザーは報酬関数を書き留めてタスクを指定する。
多くのシナリオでは、ユーザーはタスクを単語や数字で記述できないが、タスクが解決された場合の世界がどのように見えるかを簡単に示すことができる。
この観察に動機づけられた制御アルゴリズムは、成功した結果状態の例だけを考慮すれば、成功する結果につながる確率の高い状態を訪問することを目的としている。
論文 参考訳(メタデータ) (2021-03-23T16:19:55Z) - Information Directed Reward Learning for Reinforcement Learning [64.33774245655401]
我々は、標準rlアルゴリズムが可能な限り少数の専門家クエリで高い期待値を達成することができる報酬関数のモデルを学ぶ。
特定のタイプのクエリ用に設計された以前のアクティブな報酬学習方法とは対照的に、IDRLは自然に異なるクエリタイプに対応します。
我々は,複数の環境における広範囲な評価と,異なるタイプのクエリでこの結果を支持する。
論文 参考訳(メタデータ) (2021-02-24T18:46:42Z) - Quantifying Differences in Reward Functions [24.66221171351157]
2つの報酬関数間の差を直接定量化するために、等価・ポリティ不変比較(EPIC)距離を導入する。
EPIC は、常に同じ最適ポリシーを導出する報酬関数の同値類において不変であることを示す。
論文 参考訳(メタデータ) (2020-06-24T17:35:15Z) - Off-Policy Adversarial Inverse Reinforcement Learning [0.0]
Adversarial Imitation Learning (AIL)は、強化学習(RL)におけるアルゴリズムのクラスである。
本稿では, サンプル効率が良く, 模倣性能も良好であるOff-policy-AIRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-03T16:51:40Z) - Variational Policy Propagation for Multi-agent Reinforcement Learning [68.26579560607597]
本稿では,エージェント間の相互作用を通じて,共役ポリシーを学習するために,変動ポリシー伝搬 (VPP) という,共役型多エージェント強化学習アルゴリズムを提案する。
共同政策がマルコフランダム場(Markov Random Field)であることは、いくつかの穏やかな条件下で証明し、それによって政策空間を効果的に減少させる。
我々は、マルコフ確率場から効率的に行動をサンプリングでき、全体的な政策が微分可能であるようなポリシーにおいて、変動推論を特別な微分可能な層として統合する。
論文 参考訳(メタデータ) (2020-04-19T15:42:55Z) - Reward-Conditioned Policies [100.64167842905069]
模倣学習には、ほぼ最適の専門家データが必要である。
実演なしで指導的学習を通じて効果的な政策を学べるか?
政策探索の原則的手法として,このようなアプローチを導出する方法を示す。
論文 参考訳(メタデータ) (2019-12-31T18:07:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。